Prediction of sudden cardiac death using artificial intelligence: Current status and future directions

被引:3
|
作者
Kolk, Maarten Z. H. [1 ,2 ]
Ruiperez-Campillo, Samuel [3 ]
Wilde, Arthur A. M. [1 ,2 ]
Knops, Reinoud E. [1 ,2 ]
Narayan, Sanjiv M. [4 ,5 ]
Tjong, Fleur V. Y. [1 ,2 ]
机构
[1] Univ Amsterdam, Heart Ctr, Dept Clin & Expt Cardiol, Amsterdam UMC Locat, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Amsterdam UMC, Locat AMC, Amsterdam Cardiovasc Sci, Heart Failure & Arrhythmias, Amsterdam, Netherlands
[3] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[4] Stanford Univ, Dept Med, Stanford, CA USA
[5] Stanford Univ, Cardiovasc Inst, Stanford, CA USA
基金
荷兰研究理事会;
关键词
Artificial intelligence; Deep learning; Implantable cardioverter-defibrillator; Machine learning; Sudden cardiac death; Ventricular arrhythmia; IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR; VENTRICULAR-ARRHYTHMIAS; RISK STRATIFICATION; HEART-FAILURE; ARREST; SURVEILLANCE; POPULATION; VALIDATION; PREVENTION; BENEFIT;
D O I
10.1016/j.hrthm.2024.09.003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Sudden cardiac death (SCD) remains a pressing health issue, affecting hundreds of thousands each year globally. The heterogeneity among people who suffera SCD, ranging from individuals with severe heart failure to seemingly healthy individuals, poses a significant challenge for effective risk assessment. Conventional risk stratification, which primarily relies on left ventricular ejection fraction, has resulted in only modest efficacy of implantable cardioverter-defibrillators for SCD prevention. In response, artificial intelligence (AI) holds promise for personalized SCD risk prediction and tailoring preventive strategies to the unique profiles of individual patients. Machine and deep learning algorithms have the capability to learn intricate nonlinear patterns between complex data and defined end points, and leverage these to identify subtle indicators and predictors of SCD that may not be apparent through traditional statistical analysis. However, despite the potential of AI to improve SCD risk stratification, there are important limitations that need to be addressed. We aim to provide an overview of the current state-of-the-art of AI prediction models for SCD, highlight the opportunities for these models in clinical practice, and identify the key challenges hindering widespread adoption.
引用
收藏
页码:756 / 766
页数:11
相关论文
共 50 条
  • [31] Current status and future directions of explainable artificial intelligence in medical imaging
    Saw, Shier Nee
    Yan, Yet Yen
    Ng, Kwan Hoong
    EUROPEAN JOURNAL OF RADIOLOGY, 2025, 183
  • [32] Artificial Intelligence Approaches in Hematopoietic Cell Transplantation: A Review of the Current Status and Future Directions
    Muhsen, Ibrahim N.
    Elhassan, Tusneem
    Hashmi, Shahrukh K.
    TURKISH JOURNAL OF HEMATOLOGY, 2018, 35 (03) : 152 - 157
  • [33] Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions
    Toro-Tobon, David
    Loor-Torres, Ricardo
    Duran, Mayra
    Fan, Jungwei W.
    Ospina, Naykky Singh
    Wu, Yonghui
    Brito, Juan P.
    THYROID, 2023, 33 (08) : 903 - 917
  • [34] Artificial Intelligence for Neurosurgery : Current State and Future Directions
    Noh, Sung Hyun
    Cho, Pyung Goo
    Kim, Keung Nyun
    Kim, Sang Hyun
    Shin, Dong Ah
    JOURNAL OF KOREAN NEUROSURGICAL SOCIETY, 2023, 66 (02) : 113 - 120
  • [35] How to assess sudden cardiac death risk in hypertrophic cardiomyopathy? Current challenges and future directions
    Norrish, Gabrielle
    Niemiec, Malgorzata
    Kaski, Juan P.
    Mizia-Stec, Katarzyna
    POLISH HEART JOURNAL-KARDIOLOGIA POLSKA, 2025, 83 (01): : 8 - 17
  • [36] Ethical use of artificial intelligence to prevent sudden cardiac death: an interview study of patient perspectives
    Menno T. Maris
    Ayca Koçar
    Dick L. Willems
    Jeannette Pols
    Hanno L. Tan
    Georg L. Lindinger
    Marieke A.R. Bak
    BMC Medical Ethics, 25
  • [37] Artificial intelligence in prostate cancer: Definitions, current research, and future directions
    George, Rose S.
    Htoo, Arkar
    Cheng, Michael
    Masterson, Timothy M.
    Huang, Kun
    Adra, Nabil
    Kaimakliotis, Hristos Z.
    Akgul, Mahmut
    Cheng, Liang
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2022, 40 (06) : 262 - 270
  • [38] Artificial intelligence in ischemic stroke images: current applications and future directions
    Liu, Ying
    Wen, Zhongjian
    Wang, Yiren
    Zhong, Yuxin
    Wang, Jianxiong
    Hu, Yiheng
    Zhou, Ping
    Guo, Shengmin
    FRONTIERS IN NEUROLOGY, 2024, 15
  • [39] Ethical use of artificial intelligence to prevent sudden cardiac death: an interview study of patient perspectives
    Maris, Menno T.
    Kocar, Ayca
    Willems, Dick L.
    Pols, Jeannette
    Tan, Hanno L.
    Lindinger, Georg L.
    Bak, Marieke A. R.
    BMC MEDICAL ETHICS, 2024, 25 (01)
  • [40] Application of Artificial Intelligence Technology to prevent Sudden Cardiac Death
    Godunova, Helena
    Prokhorov, Sergei
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 1868 - 1871