Prediction of sudden cardiac death using artificial intelligence: Current status and future directions

被引:3
|
作者
Kolk, Maarten Z. H. [1 ,2 ]
Ruiperez-Campillo, Samuel [3 ]
Wilde, Arthur A. M. [1 ,2 ]
Knops, Reinoud E. [1 ,2 ]
Narayan, Sanjiv M. [4 ,5 ]
Tjong, Fleur V. Y. [1 ,2 ]
机构
[1] Univ Amsterdam, Heart Ctr, Dept Clin & Expt Cardiol, Amsterdam UMC Locat, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Amsterdam UMC, Locat AMC, Amsterdam Cardiovasc Sci, Heart Failure & Arrhythmias, Amsterdam, Netherlands
[3] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[4] Stanford Univ, Dept Med, Stanford, CA USA
[5] Stanford Univ, Cardiovasc Inst, Stanford, CA USA
基金
荷兰研究理事会;
关键词
Artificial intelligence; Deep learning; Implantable cardioverter-defibrillator; Machine learning; Sudden cardiac death; Ventricular arrhythmia; IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR; VENTRICULAR-ARRHYTHMIAS; RISK STRATIFICATION; HEART-FAILURE; ARREST; SURVEILLANCE; POPULATION; VALIDATION; PREVENTION; BENEFIT;
D O I
10.1016/j.hrthm.2024.09.003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Sudden cardiac death (SCD) remains a pressing health issue, affecting hundreds of thousands each year globally. The heterogeneity among people who suffera SCD, ranging from individuals with severe heart failure to seemingly healthy individuals, poses a significant challenge for effective risk assessment. Conventional risk stratification, which primarily relies on left ventricular ejection fraction, has resulted in only modest efficacy of implantable cardioverter-defibrillators for SCD prevention. In response, artificial intelligence (AI) holds promise for personalized SCD risk prediction and tailoring preventive strategies to the unique profiles of individual patients. Machine and deep learning algorithms have the capability to learn intricate nonlinear patterns between complex data and defined end points, and leverage these to identify subtle indicators and predictors of SCD that may not be apparent through traditional statistical analysis. However, despite the potential of AI to improve SCD risk stratification, there are important limitations that need to be addressed. We aim to provide an overview of the current state-of-the-art of AI prediction models for SCD, highlight the opportunities for these models in clinical practice, and identify the key challenges hindering widespread adoption.
引用
收藏
页码:756 / 766
页数:11
相关论文
共 50 条
  • [21] Current Status and Future Directions of Research on Artificial Intelligence in Nasopharyngolaryngoscopy
    Fan, Cui
    Miao, Xiangwan
    Sun, Xingmei
    Zhong, Yiming
    Liu, Bin
    Xiang, Mingliang
    Ye, Bin
    RESPIRATION, 2025, 104 (04) : 255 - 263
  • [22] Artificial intelligence in early detection and prediction of pediatric/neonatal acute kidney injury: current status and future directions
    Raina, Rupesh
    Nada, Arwa
    Shah, Raghav
    Aly, Hany
    Kadatane, Saurav
    Abitbol, Carolyn
    Aggarwal, Mihika
    Koyner, Jay
    Neyra, Javier
    Sethi, Sidharth Kumar
    PEDIATRIC NEPHROLOGY, 2024, 39 (08) : 2309 - 2324
  • [23] Application of artificial intelligence in cataract management: current and future directions
    Gutierrez, Laura
    Lim, Jane Sujuan
    Foo, Li Lian
    Ng, Wei Yan Yan
    Yip, Michelle
    Lim, Gilbert Yong San
    Wong, Melissa Hsing Yi
    Fong, Allan
    Rosman, Mohamad
    Mehta, Jodhbir Singth
    Lin, Haotian
    Ting, Darren Shu Jeng
    Ting, Daniel Shu Wei
    EYE AND VISION, 2022, 9 (01)
  • [24] Artificial intelligence in myopia in children: current trends and future directions
    Ling, Clarissa Ng Yin
    Zhu, Xiangjia
    Ang, Marcus
    CURRENT OPINION IN OPHTHALMOLOGY, 2024, 35 (06) : 463 - 471
  • [25] A systematic review of automated prediction of sudden cardiac death using ECG signals
    Ghasad, Preeti P.
    Vegivada, Jagath V. S.
    Kamble, Vipin M.
    Bhurane, Ankit A.
    Santosh, Nikhil
    Sharma, Manish
    Tan, Ru-San
    Acharya, U. Rajendra
    PHYSIOLOGICAL MEASUREMENT, 2025, 13 (01)
  • [26] Current and Future Use of Artificial Intelligence in Electrocardiography
    Martinez-Selles, Manuel
    Marina-Breysse, Manuel
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2023, 10 (04)
  • [27] Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: current state and future directions
    Mansur, Arian
    Saleem, Zain
    Elhakim, Tarig
    Daye, Dania
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [28] The current status of interventions aiming at reducing sudden cardiac death in dialysis patients
    de Bie, Mihaly K.
    van Dam, Bastiaan
    Gaasbeek, Andre
    van Buren, Marjolijn
    van Erven, Lieselot
    Bax, Jeroen J.
    Schalij, Martin J.
    Rabelink, Ton J.
    Jukema, J. Wouter
    EUROPEAN HEART JOURNAL, 2009, 30 (13) : 1559 - 1564
  • [29] Identification of New Clinical Phenotypes of Sudden Cardiac Death Using Artificial Intelligence
    Jabre, Patricia
    Youssfi, Younes
    Bougouin, Wulfran
    Beganton, Frankie
    Chopin, Nicolas
    Jouven, Xavier
    CIRCULATION, 2023, 148
  • [30] Art and science of risk stratification of sudden cardiac death in hypertrophic cardiomyopathy: Current state, unknowns, and future directions
    Siontis, Konstantinos C.
    Ommen, Steve R.
    Geske, Jeffrey B.
    PROGRESS IN CARDIOVASCULAR DISEASES, 2023, 80 : 25 - 31