Interpretable Multiscale Convolutional Neural Network for Classification and Feature Visualization of Weak Raman Spectra of Biomolecules at Cell Membranes

被引:0
|
作者
Chin, Che-Lun [1 ]
Chang, Chia-En [1 ]
Chao, Ling [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
来源
ACS SENSORS | 2025年
关键词
convolutional neural networks (CNN); Raman spectroscopy; interpretable; multiscale; biomolecular spectra; AMINO-ACIDS; SECONDARY STRUCTURE; SPECTROSCOPY; PROTEINS; SCATTERING; DYNAMICS; TISSUE; BANDS;
D O I
10.1021/acssensors.4c03260
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Raman spectroscopy in biological applications faces challenges due to complex spectra, characterized by peaks of varying widths and significant biological background noise. Convolutional neural networks (CNNs) are widely used for spectrum classification due to their ability to capture local peak features. In this study, we introduce a multiscale CNN designed to detect weak biomolecule signals and differentiate spectra with features that cannot be statistically distinguished. The approach is further enhanced by a new visualization technique tailored for multiscale spectral analysis, providing clear insights into classification results. Using the classification of cholera toxin B subunit (CTB)-treated versus untreated cell membrane samples, whose spectra cannot be statistically differentiated, the optimized multiscale CNN achieved superior performance compared to traditional machine learning methods and existing multiscale CNNs, with accuracy (99.22%), sensitivity (99.27%), specificity (99.16%), and precision (99.20%). Our new visualization method, based on gradients of activation maps with respect to class scores, generates saliency scores that capture sample variations, with decision-making relying on consistently identified peak features. By visualizing the effects of different kernel sizes, Grad-AM highlights features at varying scales, aligning closely with spectral features and enhancing CNN interpretability in complex biomolecular analysis. These advancements demonstrate the potential of our method to improve spectral analysis and reveal previously hidden peaks in complex biological environments.
引用
收藏
页数:15
相关论文
共 43 条
  • [1] Feature visualization of Raman spectrum analysis with deep convolutional neural network
    Fukuhara, Masashi
    Fujiwara, Kazuhiko
    Maruyama, Yoshihiro
    Itoh, Hiroyasu
    ANALYTICA CHIMICA ACTA, 2019, 1087 : 11 - 19
  • [2] Raman spectroscopy combined with convolutional neural network for the sub-types classification of breast cancer and critical feature visualization
    Li, Juan
    Wang, Xiaoting
    Min, Shungeng
    Xia, Jingjing
    Li, Jinyao
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 255
  • [3] Enhanced cancer classification and critical feature visualization using Raman spectroscopy and convolutional neural networks
    Xia, Jingjing
    Li, Juan
    Wang, Xiaoting
    Li, Yuan
    Li, Jinyao
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 326
  • [4] Multiscale Convolutional Neural Network of Raman Spectra of Human Serum for Hepatitis B Disease Diagnosis
    Cheng, Junlong
    Yu, Long
    Tian, Shengwei
    Lv, Xiaoyi
    Zhang, Zhaoxia
    SPECTROSCOPY, 2022, 37 (01) : 18 - +
  • [5] A novel technology of structural distance feature of Raman spectra and convolutional neural network for alcohol dependence diagnosis
    Feng, Yifan
    Chen, Cheng
    Liu, Shuxian
    Dong, Bingyu
    Yu, Yongzi
    Chen, Chen
    Lv, Xiaoyi
    MICROCHEMICAL JOURNAL, 2023, 189
  • [6] Scene Classification Based on Multiscale Convolutional Neural Network
    Liu, Yanfei
    Zhong, Yanfei
    Qin, Qianqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 7109 - 7121
  • [7] Dense Convolutional Neural Network for Identification of Raman Spectra
    Zhou, Wei
    Qian, Ziheng
    Ni, Xinyuan
    Tang, Yujun
    Guo, Hanming
    Zhuang, Songlin
    SENSORS, 2023, 23 (17)
  • [8] Classification of skin cancer using convolutional neural networks analysis of Raman spectra
    Bratchenko, Ivan A.
    Bratchenko, Lyudmila A.
    Khristoforova, Yulia A.
    Moryatov, Alexander A.
    V. Kozlo, Sergey
    Zakharo, Valery P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 219
  • [9] Multiscale Convolutional Neural Network With Feature Alignment for Bearing Fault Diagnosis
    Chen, Junbin
    Huang, Ruyi
    Zhao, Kun
    Wang, Wei
    Liu, Longcan
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [10] Convolutional neural network-based retrieval of Raman signals from CARS spectra
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    OPTICS CONTINUUM, 2022, 1 (06): : 1324 - 1339