Physical Color Calibration of Digital Pathology Scanners for Robust Artificial Intelligence-Assisted Cancer Diagnosis

被引:1
作者
Ji, Xiaoyi [1 ]
Salmon, Richard [2 ]
Mulliqi, Nita [1 ]
Khan, Umair [3 ]
Wang, Yinxi [1 ]
Blilie, Anders [4 ,5 ]
Olsson, Henrik [1 ]
Pedersen, Bodil Ginnerup [6 ,7 ]
Sorensen, Karina Dalsgaard [7 ,8 ]
Ulhoi, Benedicte Parm [9 ]
Kjosavik, Svein R. [10 ,11 ]
Janssen, Emilius A. M. [4 ,12 ,13 ]
Rantalainen, Mattias [1 ]
Egevad, Lars [14 ]
Ruusuvuori, Pekka [3 ,15 ,16 ]
Eklund, Martin [1 ]
Kartasalo, Kimmo [17 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[2] PathQA Ltd, London, England
[3] Univ Turku, Inst Biomed, Turku, Finland
[4] Stavanger Univ Hosp, Dept Pathol, Stavanger, Norway
[5] Univ Stavanger, Fac Hlth Sci, Stavanger, Norway
[6] Aarhus Univ Hosp, Dept Radiol, Aarhus, Denmark
[7] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
[8] Aarhus Univ Hosp, Dept Mol Med, Aarhus, Denmark
[9] Aarhus Univ Hosp, Dept Pathol, Aarhus, Denmark
[10] Stavanger Univ Hosp, Gen Practice & Care Coordinat Res Grp, Stavanger, Norway
[11] Univ Bergen, Fac Med, Dept Global Publ Hlth & Primary Care, Bergen, Norway
[12] Univ Stavanger, Dept Chem Biosci & Environm Engn, Stavanger, Norway
[13] Griffith Univ, Inst Biomed & Glyc, Nathan, Qld, Australia
[14] Karolinska Inst, Dept Oncol & Pathol, Stockholm, Sweden
[15] Univ Turku, InFLAMES Res Flagship, Turku, Finland
[16] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[17] Karolinska Inst, Dept Med Epidemiol & Biostat, SciLifeLab, Stockholm, Sweden
关键词
artificial intelligence; color calibration; computational pathology; foundation model; prostate cancer; whole slide scanning; PROSTATE-CANCER; FOUNDATION MODEL; BIOPSIES; SLIDE;
D O I
10.1016/j.modpat.2025.100715
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The potential of artificial intelligence (AI) in digital pathology is limited by technical inconsistencies in the production of whole slide images (WSIs). This causes degraded AI performance and poses a challenge for widespread clinical application, as fine-tuning algorithms for each site is impractical. Changes in the imaging workflow can also compromise diagnostic accuracy and patient safety. Physical color calibration of scanners, relying on a biomaterial-based calibrant slide and a spectrophotometric reference measurement, has been proposed for standardizing WSI appearance, but its impact on AI performance has not been investigated. We evaluated whether physical color calibration can enable robust AI performance. We trained fully supervised and foundation model-based AI systems for detecting and Gleason grading prostate cancer using WSIs of prostate biopsies from the STHLM3 clinical trial (n = 3651) and evaluated their performance in 3 external cohorts (n = 1161) with and without calibration. With physical color calibration, the fully supervised system's concordance with pathologists' grading (Cohen linearly weighted K) improved from 0.439 to 0.619 in the Stavanger University Hospital cohort (n = 860), from 0.354 to 0.738 in the Karolinska University Hospital cohort (n = 229), and from 0.423 to 0.452 in the Aarhus University Hospital cohort (n = 72). The foundation model's concordance improved as follows: from 0.739 to 0.760 (Karolinska), from 0.424 to 0.459 (Aarhus), and from 0.547 to 0.670 (Stavanger). This study demonstrated that physical color calibration provides a potential solution to the variation introduced by different scanners, making AI-based cancer diagnostics more reliable and applicable in diverse clinical settings. (c) 2025 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 48 条
[31]   Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens [J].
Nagpal, Kunal ;
Foote, Davis ;
Tan, Fraser ;
Liu, Yun ;
Chen, Po-Hsuan Cameron ;
Steiner, David F. ;
Manoj, Naren ;
Olson, Niels ;
Smith, Jenny L. ;
Mohtashamian, Arash ;
Peterson, Brandon ;
Amin, Mahul B. ;
Evans, Andrew J. ;
Sweet, Joan W. ;
Cheung, Carol ;
van der Kwast, Theodorus ;
Sangoi, Ankur R. ;
Zhou, Ming ;
Allan, Robert ;
Humphrey, Peter A. ;
Hipp, Jason D. ;
Gadepalli, Krishna ;
Corrado, Greg S. ;
Peng, Lily H. ;
Stumpe, Martin C. ;
Mermel, Craig H. .
JAMA ONCOLOGY, 2020, 6 (09) :1372-1380
[32]  
Nelson K, 2015, 2015 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR SECURITY AND DEFENSE APPLICATIONS (CISDA), P162
[33]   Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction [J].
Olsson, Henrik ;
Kartasalo, Kimmo ;
Mulliqi, Nita ;
Capuccini, Marco ;
Ruusuvuori, Pekka ;
Samaratunga, Hemamali ;
Delahunt, Brett ;
Lindskog, Cecilia ;
Janssen, Emiel A. M. ;
Blilie, Anders ;
Egevad, Lars ;
Spjuth, Ola ;
Eklund, Martin .
NATURE COMMUNICATIONS, 2022, 13 (01)
[34]  
Oquab M, 2024, Arxiv, DOI [arXiv:2304.07193, DOI 10.48550/ARXIV.2304.07193]
[35]  
Patel Ankush, 2021, J Pathol Inform, V12, P50, DOI [10.4103/jpi.jpi_66_21, 10.4103/jpi.jpi_66_21]
[36]  
Romanchikova Marina, 2022, J Pathol Inform, V13, P100157, DOI [10.1016/j.jpi.2022.100157, 10.1016/j.jpi.2022.100157]
[37]   Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study [J].
Strom, Peter ;
Kartasalo, Kimmo ;
Olsson, Henrik ;
Solorzano, Leslie ;
Delahunt, Brett ;
Berney, Daniel M. ;
Bostwick, David G. ;
Evans, Andrew J. ;
Grignon, David J. ;
Humphrey, Peter A. ;
Iczkowski, Kenneth A. ;
Kench, James G. ;
Kristiansen, Glen ;
van der Kwast, Theodorus H. ;
Leite, Katia R. M. ;
McKenney, Jesse K. ;
Oxley, Jon ;
Pan, Chin-Chen ;
Samaratunga, Hemamali ;
Srigley, John R. ;
Takahashi, Hiroyuki ;
Tsuzuki, Toyonori ;
Varma, Murali ;
Zhou, Ming ;
Lindberg, Johan ;
Lindskog, Cecilia ;
Ruusuvuori, Pekka ;
Wahlby, Carolina ;
Gronberg, Henrik ;
Rantalainen, Mattias ;
Egevad, Lars ;
Eklund, Martin .
LANCET ONCOLOGY, 2020, 21 (02) :222-232
[38]   Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer [J].
Swiderska-Chadaj, Zaneta ;
de Bel, Thomas ;
Blanchet, Lionel ;
Baidoshvili, Alexi ;
Vossen, Dirk ;
van der Laak, Jeroen ;
Litjens, Geert .
SCIENTIFIC REPORTS, 2020, 10 (01)
[39]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[40]   Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology [J].
Tellez, David ;
Litjens, Geert ;
Bandi, Peter ;
Bulten, Wouter ;
Bokhorst, John-Melle ;
Ciompi, Francesco ;
van der Laak, Jeroen .
MEDICAL IMAGE ANALYSIS, 2019, 58