Physical Color Calibration of Digital Pathology Scanners for Robust Artificial Intelligence-Assisted Cancer Diagnosis

被引:0
作者
Ji, Xiaoyi [1 ]
Salmon, Richard [2 ]
Mulliqi, Nita [1 ]
Khan, Umair [3 ]
Wang, Yinxi [1 ]
Blilie, Anders [4 ,5 ]
Olsson, Henrik [1 ]
Pedersen, Bodil Ginnerup [6 ,7 ]
Sorensen, Karina Dalsgaard [7 ,8 ]
Ulhoi, Benedicte Parm [9 ]
Kjosavik, Svein R. [10 ,11 ]
Janssen, Emilius A. M. [4 ,12 ,13 ]
Rantalainen, Mattias [1 ]
Egevad, Lars [14 ]
Ruusuvuori, Pekka [3 ,15 ,16 ]
Eklund, Martin [1 ]
Kartasalo, Kimmo [17 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[2] PathQA Ltd, London, England
[3] Univ Turku, Inst Biomed, Turku, Finland
[4] Stavanger Univ Hosp, Dept Pathol, Stavanger, Norway
[5] Univ Stavanger, Fac Hlth Sci, Stavanger, Norway
[6] Aarhus Univ Hosp, Dept Radiol, Aarhus, Denmark
[7] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
[8] Aarhus Univ Hosp, Dept Mol Med, Aarhus, Denmark
[9] Aarhus Univ Hosp, Dept Pathol, Aarhus, Denmark
[10] Stavanger Univ Hosp, Gen Practice & Care Coordinat Res Grp, Stavanger, Norway
[11] Univ Bergen, Fac Med, Dept Global Publ Hlth & Primary Care, Bergen, Norway
[12] Univ Stavanger, Dept Chem Biosci & Environm Engn, Stavanger, Norway
[13] Griffith Univ, Inst Biomed & Glyc, Nathan, Qld, Australia
[14] Karolinska Inst, Dept Oncol & Pathol, Stockholm, Sweden
[15] Univ Turku, InFLAMES Res Flagship, Turku, Finland
[16] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[17] Karolinska Inst, Dept Med Epidemiol & Biostat, SciLifeLab, Stockholm, Sweden
关键词
artificial intelligence; color calibration; computational pathology; foundation model; prostate cancer; whole slide scanning; PROSTATE-CANCER; FOUNDATION MODEL; BIOPSIES; SLIDE;
D O I
10.1016/j.modpat.2025.100715
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The potential of artificial intelligence (AI) in digital pathology is limited by technical inconsistencies in the production of whole slide images (WSIs). This causes degraded AI performance and poses a challenge for widespread clinical application, as fine-tuning algorithms for each site is impractical. Changes in the imaging workflow can also compromise diagnostic accuracy and patient safety. Physical color calibration of scanners, relying on a biomaterial-based calibrant slide and a spectrophotometric reference measurement, has been proposed for standardizing WSI appearance, but its impact on AI performance has not been investigated. We evaluated whether physical color calibration can enable robust AI performance. We trained fully supervised and foundation model-based AI systems for detecting and Gleason grading prostate cancer using WSIs of prostate biopsies from the STHLM3 clinical trial (n = 3651) and evaluated their performance in 3 external cohorts (n = 1161) with and without calibration. With physical color calibration, the fully supervised system's concordance with pathologists' grading (Cohen linearly weighted K) improved from 0.439 to 0.619 in the Stavanger University Hospital cohort (n = 860), from 0.354 to 0.738 in the Karolinska University Hospital cohort (n = 229), and from 0.423 to 0.452 in the Aarhus University Hospital cohort (n = 72). The foundation model's concordance improved as follows: from 0.739 to 0.760 (Karolinska), from 0.424 to 0.459 (Aarhus), and from 0.547 to 0.670 (Stavanger). This study demonstrated that physical color calibration provides a potential solution to the variation introduced by different scanners, making AI-based cancer diagnostics more reliable and applicable in diverse clinical settings. (c) 2025 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 48 条
  • [1] Abadi M., 2016, arXiv
  • [2] A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer
    Amgad, Mohamed
    Hodge, James M.
    Elsebaie, Maha A. T.
    Bodelon, Clara
    Puvanesarajah, Samantha
    Gutman, David A.
    Siziopikou, Kalliopi P.
    Goldstein, Jeffery A.
    Gaudet, Mia M.
    Teras, Lauren R.
    Cooper, Lee A. D.
    [J]. NATURE MEDICINE, 2023, 30 (1) : 85 - 97
  • [3] Consistency and Standardization of Color in Medical Imaging: a Consensus Report
    Badano, Aldo
    Revie, Craig
    Casertano, Andrew
    Cheng, Wei-Chung
    Green, Phil
    Kimpe, Tom
    Krupinski, Elizabeth
    Sisson, Christye
    Skrovseth, Stein
    Treanor, Darren
    Boynton, Paul
    Clunie, David
    Flynn, Michael J.
    Heki, Tatsuo
    Hewitt, Stephen
    Homma, Hiroyuki
    Masia, Andy
    Matsui, Takashi
    Nagy, Balazs
    Nishibori, Masahiro
    Penczek, John
    Schopf, Thomas
    Yagi, Yukako
    Yokoi, Hideto
    [J]. JOURNAL OF DIGITAL IMAGING, 2015, 28 (01) : 41 - 52
  • [4] Bautista Pinky A, 2014, J Pathol Inform, V5, P4, DOI 10.4103/2153-3539.126153
  • [5] Bommasani R., 2021, arXiv
  • [6] Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
    Bulten, Wouter
    Kartasalo, Kimmo
    Chen, Po-Hsuan Cameron
    Strom, Peter
    Pinckaers, Hans
    Nagpal, Kunal
    Cai, Yuannan
    Steiner, David F.
    van Boven, Hester
    Vink, Robert
    Hulsbergen-van de Kaa, Christina
    van der Laak, Jeroen
    Amin, Mahul B.
    Evans, Andrew J.
    van der Kwast, Theodorus
    Allan, Robert
    Humphrey, Peter A.
    Gronberg, Henrik
    Samaratunga, Hemamali
    Delahunt, Brett
    Tsuzuki, Toyonori
    Hakkinen, Tomi
    Egevad, Lars
    Demkin, Maggie
    Dane, Sohier
    Tan, Fraser
    Valkonen, Masi
    Corrado, Greg S.
    Peng, Lily
    Mermel, Craig H.
    Ruusuvuori, Pekka
    Litjens, Geert
    Eklund, Martin
    [J]. NATURE MEDICINE, 2022, 28 (01) : 154 - +
  • [7] Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study
    Bulten, Wouter
    Pinckaers, Hans
    van Boven, Hester
    Vink, Robert
    de Bel, Thomas
    van Ginneken, Bram
    van der Laak, Jeroen
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. LANCET ONCOLOGY, 2020, 21 (02) : 233 - 241
  • [8] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [9] Center for Devices and Radiological Health, Technical performance assessment of digital pathology whole slide imaging devices
  • [10] Towards a general-purpose foundation model for computational pathology
    Chen, Richard J.
    Ding, Tong
    Lu, Ming Y.
    Williamson, Drew F. K.
    Jaume, Guillaume
    Song, Andrew H.
    Chen, Bowen
    Zhang, Andrew
    Shao, Daniel
    Shaban, Muhammad
    Williams, Mane
    Oldenburg, Lukas
    Weishaupt, Luca L.
    Wang, Judy J.
    Vaidya, Anurag
    Le, Long Phi
    Gerber, Georg
    Sahai, Sharifa
    Williams, Walt
    Mahmood, Faisal
    [J]. NATURE MEDICINE, 2024, 30 (03) : 850 - 862