Convex Bodies with Equipotential Circles

被引:0
|
作者
Gonzalez-Garcia, Ivan [1 ]
Jeronimo-Castro, Jesus [1 ]
Jimenez-Desantiago, Valentin [2 ]
Morales-Amaya, Efren [3 ]
机构
[1] Univ Autonoma Queretaro, Fac Ingn, Santiago De Queretaro, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City, Mexico
[3] Autonomous Univ Guerrero, Dept Math, Chilpancingo, Mexico
来源
AMERICAN MATHEMATICAL MONTHLY | 2025年 / 132卷 / 03期
关键词
D O I
10.1080/00029890.2024.2434439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a convex body K subset of R2 we say that a circle B subset of intK is an equipotential circle if a variable chord AB of K tangent to B at P has the product |AP|<middle dot>|PB| constant. The main result of this article is the following: Let K subset of R2 be a convex body that has an interior equipotential circle B centered at O. Then K has center of symmetry at O, moreover, if no chord of K tangent to B subtends an angle pi/2 from O, then K is a disk.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条