Experimental Verification of Rainfall Impact on Sparse Array Radar

被引:0
作者
Kawaguchi, Takuya [1 ]
Shinotsuka, Kazuki [1 ]
Malterer, Stefan [2 ]
机构
[1] Fujikura Ltd, Digital Informat Proc Technol Res Grp, Sakura, Japan
[2] Fujikura Technol Europe, Opt & RF Technol R&D Dept, Cologne, Germany
来源
2024 IEEE RADAR CONFERENCE, RADARCONF 2024 | 2024年
关键词
millimeter-wave radar; sparse array; adverse weather; LiDAR;
D O I
10.1109/RADARCONF2458775.2024.10548312
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Over the last years, millimeter-wave radars have been established as automotive sensors. Generally, radars deal better than optical sensing modalities with adverse weather conditions, with the main drawback being the angular resolution. To increase robustness toward fog or heavy rain, full autonomous driving requires radar systems to achieve higher angular resolution. Sparse array radar is a practical approach to achieving higher angular resolution while managing the drawbacks. Despite sparse radar systems acquiring less measurement data, the possibility of a stronger degradation of the performance in adverse weather conditions usually is not considered. The work shown in this paper attempts to close this gap by evaluating experimental data of sparse array radar acquired in a specialized rain chamber to model heavy rain under realistic but controllable conditions.
引用
收藏
页数:6
相关论文
共 13 条
  • [1] Analysis of Automotive Lidar Sensor Model Considering Scattering Effects in Regional Rain Environments
    Byeon, Mijung
    Yoon, Sang Won
    [J]. IEEE ACCESS, 2020, 8 : 102669 - 102679
  • [2] A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
    Haider, Arsalan
    Pigniczki, Marcell
    Koyama, Shotaro
    Koehler, Michael H.
    Haas, Lukas
    Fink, Maximilian
    Schardt, Michael
    Nagase, Koji
    Zeh, Thomas
    Eryildirim, Abdulkadir
    Poguntke, Tim
    Inoue, Hideo
    Jakobi, Martin
    Koch, Alexander W.
    [J]. SENSORS, 2023, 23 (15)
  • [3] Regular Sparse Array Direction of Arrival Estimation in One Dimension
    Knaepkens, Ferre
    Cuyt, Annie
    Lee, Wen-Shin
    de Villiers, Dirk I. L.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (05) : 3997 - 4006
  • [4] Signal Processing for TDM MIMO FMCW Millimeter-Wave Radar Sensors
    Li, Xinrong
    Wang, Xiaodong
    Yang, Qing
    Fu, Song
    [J]. IEEE ACCESS, 2021, 9 : 167959 - 167971
  • [5] Mahafza BR., 2005, RADAR SYSTEMS ANAL D
  • [6] MARSHALL JS, 1948, J METEOROL, V5, P165, DOI 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO
  • [7] 2
  • [8] Mateos-Núñez D, 2019, EUROP RADAR CONF, P249
  • [9] National Research Institute for Earth Science and Disaster Resilience (NIED), Large scale Rainfall Simulator
  • [10] Super-Resolution Radar Imaging With Sparse Arrays Using a Deep Neural Network Trained With Enhanced Virtual Data
    Schuessler, Christian
    Hoffmann, Marcel
    Vossiek, Martin
    [J]. IEEE JOURNAL OF MICROWAVES, 2023, 3 (03): : 980 - 993