Integrating Fault Diagnosis with Moving Horizon Estimation: A CSTR Case Study

被引:0
|
作者
Bagla, Giriraj [1 ]
Patwardhan, Sachin C. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 14期
关键词
Moving Horizon Estimation; Fault Diagnosis and Identification; Fault Tolerant Control;
D O I
10.1016/j.ifacol.2024.08.352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fault diagnosis and identification (FDI) is a critical aspect of process performance monitoring. In this work, statistical properties of decision variables of unconstrained Moving horizon estimation (MHE) are derived and further used for FDI. Once a fault is isolated, the fault magnitude refinement is carried out only for the isolated fault. Further, a hypothesis test is developed to terminate fault magnitude refinement when the fault magnitude saturates. When a sensor fault is isolated, the fault magnitude information is used for on-line compensation of measurements sent to the controller. The proposed approach is able to isolate and compensate for multiple single faults occurring sequentially in time and has embedded intelligence to carry out fault identification only when required. The efficacy of the proposed approach is demonstrated by simulating a non-isothermal CSTR system. Analysis of the simulation results underscore the effectiveness of the MHE-FDI scheme in correctly identifying faults in disturbance, actuator, and concentration measurements. Copyright (C) 2024 The Authors.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [1] Robust Air Data Sensor Fault Diagnosis With Enhanced Fault Sensitivity Using Moving Horizon Estimation
    Wan, Yiming
    Keviczky, Tamas
    Verhaegen, Michel
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5969 - 5975
  • [2] Explicit Moving Horizon Control and Estimation: A Batch Polymerization Case Study
    Sui, Dan
    Feng, Le
    Hovd, Morten
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1647 - 1652
  • [3] Active Fault Diagnosis using Moving Horizon Input Design
    Raimondo, Davide M.
    Braatz, Richard D.
    Scott, Joseph K.
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 3137 - 3142
  • [4] Use of multiple models and qualitative knowledge for on-line moving horizon disturbance estimation and fault diagnosis
    Gatzke, EP
    Doyle, FJ
    JOURNAL OF PROCESS CONTROL, 2002, 12 (02) : 339 - 352
  • [5] A study on recursive algorithm of moving horizon estimation
    Wang, Z
    Liu, ZY
    Ban, XG
    Pei, R
    CCA 2003: PROCEEDINGS OF 2003 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2003, : 972 - 976
  • [6] Robust Explicit Moving Horizon Control and Estimation: A Batch Polymerization Case Study
    Sui, Dan
    Feng, Le
    Hovd, Morten
    MODELING IDENTIFICATION AND CONTROL, 2009, 30 (01) : 17 - U27
  • [7] A distributed fault detection and isolation algorithm based on Moving Horizon Estimation
    Lauricella, M.
    Farina, M.
    Schneider, R.
    Scattolini, R.
    IFAC PAPERSONLINE, 2017, 50 (01): : 15259 - 15264
  • [8] Fault Detection for Distributed Uncertain Systems using Moving Horizon Estimation
    Meynen, Soenke
    Hohmann, Soeren
    Fessler, Dirk
    IFAC PAPERSONLINE, 2022, 55 (06): : 234 - 241
  • [9] Fault Detection for Uncertain Nonlinear Systems Based on Moving Horizon Estimation
    Meynen, Soenke
    Hohmann, Soeren
    Fessler, Dirk
    5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, : 679 - 684
  • [10] Fault Detection and Diagnosis Based on Interactive Multi-Model Moving Horizon Estimation and Neuro-Tire Model
    Zhang, Bohan
    Lu, Shaobo
    Xie, Wenke
    Xie, Feifei
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (05) : 3614 - 3625