Photothermal effect and hole transport properties of polyaniline for enhanced photoelectrochemical water splitting of BiVO4 photoanode

被引:1
|
作者
Li, Haolun [1 ]
Lyu, Mingxin [1 ]
Chen, Pengliang [1 ]
Tian, Yingnan [1 ]
Kang, Jianye [1 ]
Lai, Yanhua [1 ]
Cheng, Xingxing [1 ]
Dong, Zhen [2 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Shandong, Peoples R China
[2] Shandong Univ, Suzhou Res Inst, Suzhou 215123, Jiangsu, Peoples R China
关键词
BiVO; 4; Oxygen evolution catalysts; Polyaniline; Photothermal effect; Photoelectrochemical water splitting; CARBON-PASTE ELECTRODE; PHOTOCATALYTIC ACTIVITY; TEMPERATURE-DEPENDENCE; HETEROJUNCTION; NANOPARTICLES; FILMS; PERFORMANCE; NIO;
D O I
10.1016/j.jcis.2025.01.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As modification strategies are actively developed, the photothermal effect is expected to be a viable way to enhance the PEC water splitting performance. Herein, we demonstrate that the photothermal polyaniline (PANI) layer inserted between CoF2 cocatalyst and BiVO4 can enhance the photocurrent density of pure BiVO4 by 3.50 times. The coated PANI layer exhibits excellent photothermal conversion and hole transport properties. Under near-infrared (NIR) light irradiation at 808 nm, PANI can raise the temperature of the photoanode in situ, thus promoting bulk charge transfer and broadening the light absorption range. After the CoF2 cocatalyst is deposited on the BiVO4/PANI surface, the water oxidation activity of the composite photoanode is also significantly enhanced due to the temperature elevation. In addition, density-functional theory (DFT) simulations demonstrate that BiVO4/PANI/CoF2 can dramatically reduce the energy barrier required for oxygen evolution reaction, accelerating the oxygen evolution kinetics. Under NIR light irradiation, the meticulously designed BiVO4/PANI/ CoF2 (BPC) photoanode displays a photocurrent density of 4.34 mA cm-2 at 1.23 V vs. RHE (VRHE) with an excellent charge injection efficiency of 88.14 %. In addition, at 350 nm, the incident photon-to-current efficiency (IPCE) of the BPC photoanode reaches up to 60.45 %, which is much higher than that of pure BiVO4 (7.75 %). At 0.66 VRHE, the applied bias photon-to-current efficiency (ABPE) value of BPC photoanode can reach 1.37 %, which is 12.5 times higher than that of pure BiVO4. This simple and robust strategy provides a pathway to employ photothermal materials to design PEC water splitting photoanodes with excellent overall performance.
引用
收藏
页码:758 / 768
页数:11
相关论文
共 50 条
  • [1] Serial hole transfer layers for a BiVO4 photoanode with enhanced photoelectrochemical water splitting
    Li, Linsen
    Li, Jinhua
    Bai, Jing
    Zeng, Qingyi
    Xia, Ligang
    Zhang, Yan
    Chen, Shuai
    Xu, Qunjie
    Zhou, Baoxue
    NANOSCALE, 2018, 10 (38) : 18378 - 18386
  • [2] Photothermal effect-enhanced photoelectrochemical water splitting of a BiVO4photoanode modified with dual-functional polyaniline
    Zhao, Mingyang
    Chen, Tao
    He, Bing
    Hu, Xiaoqin
    Huang, Jing
    Yi, Ping
    Wang, Yang
    Chen, Yihuang
    Li, Zhen
    Liu, Xueqin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15976 - 15983
  • [3] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Zhao, Ziwei
    Chen, Kaiyi
    Huang, Jingwei
    Wang, Lei
    She, Houde
    Wang, Qizhao
    FRONTIERS IN ENERGY, 2021, 15 (03) : 760 - 771
  • [4] A Zn: BiVO4/ Mo: BiVO4 homojunction as an efficient photoanode for photoelectrochemical water splitting
    Lee, Jae Myeong
    Baek, Ji Hyun
    Gill, Thomas Mark
    Shi, Xinjian
    Lee, SangMyeong
    Cho, In Sun
    Jung, Hyun Suk
    Zheng, Xiaolin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (15) : 9019 - 9024
  • [5] FeOOH/rGO/BiVO4 Photoanode for Highly Enhanced Photoelectrochemical Water Splitting Performance
    Zeng, Guihua
    Hou, Liqiong
    Zhang, Jialing
    Zhu, Jiaqian
    Yu, Xiang
    Fu, Xionghui
    Zhu, Yi
    Zhang, Yuanming
    CHEMCATCHEM, 2020, 12 (14) : 3769 - 3775
  • [6] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Ziwei Zhao
    Kaiyi Chen
    Jingwei Huang
    Lei Wang
    Houde She
    Qizhao Wang
    Frontiers in Energy, 2021, 15 : 760 - 771
  • [7] An Electrochemically Treated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting
    Wang, Songcan
    Chen, Peng
    Yun, Jung-Ho
    Hu, Yuxiang
    Wang, Lianzhou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (29) : 8500 - 8504
  • [8] Boosting photoelectrochemical water splitting: enhanced hole transport in BiVO4 photoanodes via interfacial coupling
    Wang, Hairu
    Bai, Yuying
    Wang, Rongling
    Fu, Yanan
    Mei, Qiong
    Bai, Bo
    Wang, Qizhao
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (02) : 405 - 415
  • [9] Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode
    Zhou, Zhiming
    Chen, Jinjin
    Wang, Qinlong
    Jiang, Xingxing
    Shen, Yan
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (02) : 433 - 441
  • [10] Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode
    Zhou Z.
    Chen J.
    Wang Q.
    Jiang X.
    Shen Y.
    Chinese Journal of Catalysis, 2022, 43 (02): : 433 - 441