Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress

被引:0
|
作者
Uyar, Gul Sema [1 ]
Pandey, Anamika [1 ]
Hamurcu, Mehmet [1 ]
Vyhnanek, Tomas [2 ]
Harmankaya, Mustafa [1 ]
Topal, Ali [3 ]
Gezgin, Sait [1 ]
Khan, Mohd. Kamran [1 ]
机构
[1] Selcuk Univ, Fac Agr, Dept Soil Sci & Plant Nutr, TR-42130 Konya, Turkiye
[2] Mendel Univ Brno, Fac AgriSci, Dept Plant Biol, Brno 61300, Czech Republic
[3] Selcuk Univ, Fac Agr, Dept Field Crops, TR-42130 Konya, Turkiye
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 01期
关键词
abiotic stress; high boron; gene expression; pathways; red wild einkorn; RNA sequencing; wheat progenitor; ALPHA-DIOXYGENASE; TOLERANCE; EXPRESSION; ANTIOXIDANT; BARLEY; ACID;
D O I
10.3390/agronomy15010191
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The domestication and breeding of wheat genotypes through the years has led to the loss in their genetic variation, making them more prone to different abiotic stresses. Boron (B) toxicity is one of the stresses decreasing the wheat cultivars' yield in arid and semi-arid regions around the world. Wild wheat progenitors, such as Triticum urartu Thumanian ex Gandilyan, possess a broader gene pool that harbors several genes conferring tolerance to various biotic and abiotic stresses. Unfortunately, T. urartu is not well-explored at the molecular level for its tolerance towards B toxicity in soil. In this study, for the first time, we compared the transcriptomic changes in the leaves of a high B-tolerant T. urartu genotype, PI662222, grown in highly toxic B (10 mM B in the form of boric acid) with the ones grown in the control (3.1 mu M B) treatment in hydroponic conditions. The obtained results suggest that several mechanisms are involved in regulating the response of the studied T. urartu genotype toward B toxicity. All the growth parameters of T. urartu genotype, including root-shoot length, root fresh weight, and root-shoot dry weight, were less affected by high boron (10 mM) as compared to the boron-tolerant bread wheat cultivar. With a significant differential expression of 654 genes, 441 and 213 genes of T. urartu genotype were down- and upregulated, respectively, in the PI662222 leaves in high B in comparison to the control treatment. While key upregulated genes included those encoding RNA polymerase beta subunit (chloroplast), ATP synthase subunit gamma, chloroplastic, 60S ribosomal protein, and RNA-binding protein 12-like, the main downregulated genes included those encoding photosystem II protein D, ribulose bisphosphate carboxylase small subunit, and peroxidase 2-like. Interestingly, both Gene Ontology enrichment and KEGG pathways emphasized the possible involvement of the genes related to the photosynthetic process and apparatus in the high B tolerance of the T. urartu genotype. The further functional characterization of the identified potential T. urartu genes will facilitate their utilization in crop improvement programs for B toxicity stress.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties
    Niu, Yufei
    Li, Jingyu
    Sun, Fanting
    Song, Taiyu
    Han, Baojia
    Liu, Zijie
    Su, Peisen
    GENOMICS, 2023, 115 (05)
  • [2] Transcriptome analysis reveals key genes involved in the eggplant response to high-temperature stress
    Liu, Renjian
    Shu, Bingbing
    Wang, Yuyuan
    Yu, Bingwei
    Wang, Yixi
    Gan, Yuwei
    Liang, Yonggui
    Qiu, Zhengkun
    Yang, Jianguo
    Yan, Shuangshuang
    Cao, Bihao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 211
  • [3] Transcriptome Analysis Reveals Key Genes Involved in the Response of Pyrus betuleafolia to Drought and High-Temperature Stress
    Ma, Panpan
    Guo, Guoling
    Xu, Xiaoqian
    Luo, Tingyue
    Sun, Yu
    Tang, Xiaomei
    Heng, Wei
    Jia, Bing
    Liu, Lun
    Kim, Nam-Soo
    PLANTS-BASEL, 2024, 13 (02):
  • [4] Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep
    Li, Y. X.
    Feng, X. P.
    Wang, H. L.
    Meng, C. H.
    Zhang, J.
    Qian, Y.
    Zhong, J. F.
    Cao, S. X.
    CELL STRESS & CHAPERONES, 2019, 24 (06): : 1045 - 1054
  • [5] Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep
    YX Li
    XP Feng
    HL Wang
    CH Meng
    J Zhang
    Y Qian
    JF Zhong
    SX Cao
    Cell Stress and Chaperones, 2019, 24 : 1045 - 1054
  • [6] Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress
    Deng, Chaohong
    Zhang, Zhibin
    Yan, Guorong
    Wang, Fan
    Zhao, Lianjia
    Liu, Ning
    Abudurezike, Abudukeyoumu
    Li, Yushan
    Wang, Wei
    Shi, Shubing
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress
    Chaohong Deng
    Zhibin Zhang
    Guorong Yan
    Fan Wang
    Lianjia Zhao
    Ning Liu
    Abudukeyoumu Abudurezike
    Yushan Li
    Wei Wang
    Shubing Shi
    Scientific Reports, 10
  • [8] Salt‑responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress
    Weichao Wang
    Jiayin Pang
    Fenghua Zhang
    Lupeng Sun
    Lei Yang
    Tingdong Fu
    Liang Guo
    Kadambot H. M. Siddique
    Scientific Reports, 12
  • [9] Transcriptome Analysis Reveals Key Genes in Response to High-Temperature Stress in Rhododendron molle
    Wu, Linshi
    Liu, Yan
    Liu, Xinyun
    Li, Qiaoyun
    Yi, Xinyu
    Chen, Chan
    Wang, Ling
    Liao, Juyang
    BIORESOURCES, 2024, 19 (04): : 8238 - 8256
  • [10] Transcriptome Analysis Reveals Key Genes Involved in Weevil Resistance in the Hexaploid Sweetpotato
    Nokihara, Kanoko
    Okada, Yoshihiro
    Ohata, Shinichiro
    Monden, Yuki
    PLANTS-BASEL, 2021, 10 (08):