Evaluating conversion from mild cognitive impairment to Alzheimer's disease with structural MRI: a machine learning study

被引:0
|
作者
Vecchio, Daniela [1 ]
Piras, Federica [1 ]
Natalizi, Federica [1 ,2 ,3 ]
Banaj, Nerisa [1 ]
Pellicano, Clelia [1 ]
Piras, Fabrizio [1 ]
机构
[1] IRCCS Santa Lucia Fdn, Dept Clin Neurosci & Neurorehabil, Neuropsychiat Lab, Via Ardeatina 306, I-00179 Rome, Italy
[2] Sapienza Univ Rome, Dept Psychol, I-00185 Rome, Italy
[3] Sapienza Univ Rome, PhD Program Behav Neurosci, I-00161 Rome, Italy
关键词
Alzheimer prediction; MRI; machine learning; TEMPORAL-LOBE ATROPHY; ENTORHINAL CORTEX; SPATIAL-PATTERNS; DEFAULT-MODE; CLASSIFICATION; STATE; SEGMENTATION; DIAGNOSIS;
D O I
10.1093/braincomms/fcaf027
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Alzheimer's disease is a disabling neurodegenerative disorder for which no effective treatment currently exists. To predict the diagnosis of Alzheimer's disease could be crucial for patients' outcome, but current Alzheimer's disease biomarkers are invasive, time consuming or expensive. Thus, developing MRI-based computational methods for Alzheimer's disease early diagnosis would be essential to narrow down the phenotypic measures predictive of cognitive decline. Amnestic mild cognitive impairment (aMCI) is associated with higher risk for Alzheimer's disease, and here, we aimed to identify MRI-based quantitative rules to predict aMCI to possible Alzheimer's disease conversion, applying different machine learning algorithms sequentially. At baseline, T1-weighted brain images were collected for 104 aMCI patients and processed to obtain 146 volumetric measures of cerebral grey matter regions [regions of interest (ROIs)]. One year later, patients were classified as converters (aMCI-c = 32) or non-converters, i.e. clinically and neuropsychologically stable (aMCI-s = 72) based on cognitive performance. Feature selection was performed by random forest (RF), and the identified seven ROIs volumetric data were used to implement support vector machine (SVM) and decision tree (DT) classification algorithms. Both SVM and DT reached an average accuracy of 86% in identifying aMCI-c and aMCI-s. DT found a critical threshold volume of the right entorhinal cortex (EC-r) as the first feature for differentiating aMCI-c/aMCI-s. Almost all aMCI-c had an EC-r volume <1286 mm3, while more than half of the aMCI-s patients had a volume above the identified threshold for this structure. Other key regions for the classification between aMCI-c/aMCI-s were the left lateral occipital (LOC-l), the middle temporal gyrus and the temporal pole cortices. Our study reinforces previous evidence suggesting that the morphometry of the EC-r and LOC-l best predicts aMCI to Alzheimer's disease conversion. Further investigations are needed prior to deeming our findings as a broadly applicable predictive framework. However, here, a first indication was derived for volumetric thresholds that, being easy to obtain, may assist in early identification of Alzheimer's disease in clinical practice, thus contributing to establishing MRI as a useful non-invasive prognostic instrument for dementia onset.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using MRI and Structural Network Features
    Wei, Rizhen
    Li, Chuhan
    Fogelson, Noa
    Li, Ling
    FRONTIERS IN AGING NEUROSCIENCE, 2016, 8
  • [2] Predicting Conversion from Subjective Cognitive Decline to Mild Cognitive Impairment and Alzheimer's Disease Dementia Using Ensemble Machine Learning
    Dolcet-Negre, Marta M.
    Aguayo, Laura Imaz
    Garcia-De-Eulate, Reyes
    Marti-Andres, Gloria
    Fernandez-Matarrubia, Marta
    Dominguez, Pablo
    Fernandez-Seara, Maria A.
    Riverol, Mario
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 93 (01) : 125 - 140
  • [3] Detection of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Longitudinal Brain MRI
    Sun, Zhuo
    van de Giessen, Martijn
    Lelieveldt, Boudewijn P. F.
    Staring, Marius
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [4] A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease
    Tong, Tong
    Gao, Qinquan
    Guerrero, Ricardo
    Ledig, Christian
    Chen, Liang
    Rueckert, Daniel
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (01) : 155 - 165
  • [5] Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion
    Westman, Eric
    Muehlboeck, J-Sebastian
    Simmons, Andrew
    NEUROIMAGE, 2012, 62 (01) : 229 - 238
  • [6] A Review on Machine Learning Approaches for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment Based on Brain MRI
    Givian, Helia
    Calbimonte, Jean-Paul
    IEEE ACCESS, 2024, 12 : 109912 - 109929
  • [7] Neuroimaging and machine learning for studying the pathways from mild cognitive impairment to alzheimer's disease: a systematic review
    Ahmadzadeh, Maryam
    Christie, Gregory J.
    Cosco, Theodore D.
    Arab, Ali
    Mansouri, Mehrdad
    Wagner, Kevin R.
    DiPaola, Steve
    Moreno, Sylvain
    BMC NEUROLOGY, 2023, 23 (01)
  • [8] A Clinically-Translatable Machine Learning Algorithm for the Prediction of Alzheimer's Disease Conversion in Individuals with Mild and Premild Cognitive Impairment
    Grassi, Massimiliano
    Perna, Giampaolo
    Caldirola, Daniela
    Schruers, Koen
    Duara, Ranjan
    Loewenstein, David A.
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 61 (04) : 1555 - 1572
  • [9] Early diagnosis of Alzheimer's disease and mild cognitive impairment using MRI analysis and machine learning algorithms
    Givian, Helia
    Calbimonte, Jean-Paul
    DISCOVER APPLIED SCIENCES, 2024, 7 (01)
  • [10] Combining Neuropsychological and Structural Neuroimaging Indicators of Conversion to Alzheimer's Disease in Amnestic Mild Cognitive Impairment
    Venneri, Annalena
    Gorgoglione, Giovanni
    Toraci, Cristian
    Nocetti, Luca
    Panzetti, Patrizia
    Nichelli, Paolo
    CURRENT ALZHEIMER RESEARCH, 2011, 8 (07) : 789 - 797