Recovering single-cell expression profiles from spatial transcriptomics with scResolve

被引:3
作者
Chen, Hao [1 ]
Lee, Young Je [1 ]
Ovando-Ricardez, Jose A. [2 ]
Rosas, Lorena [2 ]
Rojas, Mauricio [2 ]
Mora, Ana L. [2 ]
Bar-Joseph, Ziv [1 ,3 ]
Lugo-Martinez, Jose [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Ray & Stephanie Lane Computat Biol Dept, Pittsburgh, PA 15213 USA
[2] Ohio State Univ, Dorothy M Davis Heart & Lung Res Inst, Dept Internal Med, Div Pulm Crit Care & Sleep Med, Columbus, OH 43210 USA
[3] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 10期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GENE-EXPRESSION; SENESCENT CELLS; CANCER; ATLAS;
D O I
10.1016/j.crmeth.2024.100864
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many popular spatial transcriptomics techniques lack single-cell resolution. Instead, these methods measure the collective gene expression for each location from a mixture of cells, potentially containing multiple cell types. Here, we developed scResolve, a method for recovering single-cell expression profiles from spatial transcriptomics measurements at multi-cellular resolution. scResolve accurately restores expression profiles of individual cells at their locations, which is unattainable with cell type deconvolution. Applications of scResolve on human breast cancer data and human lung disease data demonstrate that scResolve enables cell-type-specific differential gene expression analysis between different tissue contexts and accurate identification of rare cell populations. The spatially resolved cellular-level expression profiles obtained through scResolve facilitate more flexible and precise spatial analysis that complements raw multi-cellular level analysis.
引用
收藏
页数:20
相关论文
共 61 条
[1]   Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis [J].
Adams, Taylor S. ;
Schupp, Jonas C. ;
Poli, Sergio ;
Ayaub, Ehab A. ;
Neumark, Nir ;
Ahangari, Farida ;
Chu, Sarah G. ;
Raby, Benjamin A. ;
DeTullis, Giuseppe ;
Januszyk, Michael ;
Duan, Qiaonan ;
Arnett, Heather A. ;
Siddiqui, Asim ;
Washko, George R. ;
Homer, Robert ;
Yan, Xiting ;
Rosas, Ivan O. ;
Kaminski, Naftali .
SCIENCE ADVANCES, 2020, 6 (28)
[2]   Dissecting primary and secondary senescence to enable new senotherapeutic strategies [J].
Admasu, Tesfahun Dessale ;
Rae, Michael ;
Stolzing, Alexandra .
AGEING RESEARCH REVIEWS, 2021, 70
[3]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[4]   A multidimensional systems biology analysis of cellular senescence in aging and disease [J].
Avelar, Roberto A. ;
Ortega, Javier Gomez ;
Tacutu, Robi ;
Tyler, Eleanor J. ;
Bennett, Dominic ;
Binetti, Paolo ;
Budovsky, Arie ;
Chatsirisupachai, Kasit ;
Johnson, Emily ;
Murray, Alex ;
Shields, Samuel ;
Tejada-Martinez, Daniela ;
Thornton, Daniel ;
Fraifeld, Vadim E. ;
Bishops, Cleo L. ;
de Magalhaes, Joao Pedro .
GENOME BIOLOGY, 2020, 21 (01)
[5]   Super-resolved spatial transcriptomics by deep data fusion [J].
Bergenstrahle, Ludvig ;
He, Bryan ;
Bergenstrahle, Joseph ;
Abalo, Xesus ;
Mirzazadeh, Reza ;
Thrane, Kim ;
Ji, Andrew L. ;
Andersson, Alma ;
Larsson, Ludvig ;
Stakenborg, Nathalie ;
Boeckxstaens, Guy ;
Khavari, Paul ;
Zou, James ;
Lundeberg, Joakim ;
Maaskola, Jonas .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :476-+
[6]  
Beucher S., 1979, INT WORKSHOP IMAGE P
[7]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[8]   Senescence and the SASP: many therapeutic avenues [J].
Birch, Jodie ;
Gil, Jesus .
GENES & DEVELOPMENT, 2020, 34 (23-24) :1565-1576
[9]  
Boerner Timothy J., 2023, PEARC '23: Practice and Experience in Advanced Research Computing, P173, DOI 10.1145/3569951.3597559
[10]   Cell type-specific inference of differential expression in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Shanmugam, Vignesh ;
Zhang, Simon ;
Zou, Luli S. ;
Diao, Michael ;
Chen, Haiqi ;
Macosko, Evan Z. ;
Irizarry, Rafael A. ;
Chen, Fei .
NATURE METHODS, 2022, 19 (09) :1076-+