CUBIC LIFESPAN OF TWO-DIMENSIONAL HYDROELASTIC WAVES

被引:0
作者
Yang, Jiaqi [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen, Sanhang, Peoples R China
关键词
Hydroelastic waves; cubic lifespan; holomorphic formulation; SURFACE-TENSION LIMIT; WELL-POSEDNESS; WATER-WAVES; GLOBAL-SOLUTIONS; SOBOLEV SPACES; EXISTENCE; EQUATIONS; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we are concerned with the lifespan of hydroelastic waves with small initial data in 2 spatial dimensions. This problem describes the deformation and evolution of a thin elastic sheet floating at the surface of a potential flow. The nonlinear elastic model is based on the special Cosserat theory of hyperelastic shells originally proposed by Toland (2008). By means of the holomorphic formulation (namely, the time-dependent conformal map) of hydroelasitc waves, we prove in the paper that small data solutions have at least cubic lifespan.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 42 条
  • [21] TWO DIMENSIONAL WATER WAVES IN HOLOMORPHIC COORDINATES II: GLOBAL SOLUTIONS
    Ifrim, Mihaela
    Tataru, Daniel
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2016, 144 (02): : 369 - 394
  • [22] Global bounds for the cubic nonlinear Schrodinger equation (NLS) in one space dimension
    Ifrim, Mihaela
    Tataru, Daniel
    [J]. NONLINEARITY, 2015, 28 (08) : 2661 - 2675
  • [23] Global Regularity for 2D Water Waves with Surface Tension
    Ionescu, Alexandru D.
    Pusateri, Fabio
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 256 (1227) : 1 - +
  • [24] Global solutions for the gravity water waves system in 2d
    Ionescu, Alexandru D.
    Pusateri, Fabio
    [J]. INVENTIONES MATHEMATICAE, 2015, 199 (03) : 653 - 804
  • [25] Nonlinear fractional Schrodinger equations in one dimension
    Ionescu, Alexandru D.
    Pusateri, Fabio
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 139 - 176
  • [26] Coupling modes between two flapping filaments
    Jia, Lai-Bing
    Li, Fang
    Yin, Xie-Zhen
    Yin, Xie-Yuan
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 581 : 199 - 220
  • [27] The mathematical challenges and modelling of hydroelasticity
    Korobkin, Alexander
    Parau, Emilian I.
    Vanden-Broeck, Jean-Marc
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1947): : 2803 - 2812
  • [28] Well-posedness of the water-waves equations
    Lannes, D
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) : 605 - 654
  • [29] Well-posedness of two-dimensional hydroelastic waves with mass
    Liu, Shunlian
    Ambrose, David M.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (09) : 4656 - 4699
  • [30] Nalimov V.I., 1974, Dinamika Splo.sn. Sredy, V254, P1