On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers

被引:0
作者
Rihane, Salah Eddine [1 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
关键词
k-Fibonacci numbers; Balancing numbers; Lucas-Balancing numbers; Linear form in logarithms; Reduction method; DIOPHANTINE EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Balancing number n and the balancer r are solution of the Diophantine equation 1 + 2 + ... +(n - 1) = (n + 1) + (n + 2) + ... + (n + r). It is well known that if n is balancing number, then 8n(2) + 1 is a perfect square and its positive square root is called a Lucas-Balancing number. Let k >= 2. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequences. For these sequence the first k terms are 0, ... , 0, 1 and each term afterwards is the sum of the preceding k terms. In this manuscript, our main objective is to find all k-Fibonacci numbers which are the product of two Balancing or Lucas-Balancing numbers.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 50 条
[21]   Certain Diophantine equations involving balancing and Lucas-balancing numbers [J].
Ray, Prasanta Kumar .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (02) :165-173
[22]   Tridiagonal matrices related to subsequences of balancing and Lucas-balancing numbers [J].
Ray, Prasanta K. ;
Panda, Gopal K. .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2015, 21 (03) :56-63
[23]   Balancing and Lucas-Balancing hybrid numbers and some identities [J].
Uysal, Mine ;
Ozkan, Engin .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (05) :1293-1304
[24]   On the properties of Lucas-balancing numbers by matrix method [J].
Ray, Prasanta K. .
SIGMAE, 2014, 3 (01) :1-6
[25]   k-Fibonacci and k-Lucas numbers as (l, m)-antipalindromic numbers [J].
Brahmi, Adel ;
Mokhtar, Ahmed Ait ;
Rihane, Salah Eddine .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (02)
[26]   On tridimensional Lucas-balancing numbers and some properties [J].
Chimpanzo, J. ;
Catarino, P. ;
Otero-Espinar, M., V .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2025, 31 (01) :41-53
[27]   Sum formulas involving powers of balancing and Lucas-balancing numbers - II [J].
Rayaguru, S. G. ;
Panda, G. K. .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (03) :102-110
[28]   FERMAT k-FIBONACCI AND k-LUCAS NUMBERS [J].
Bravo, Jhon J. ;
Herrera, Jose L. .
MATHEMATICA BOHEMICA, 2020, 145 (01) :19-32
[29]   On Generating Matrices of the Bidimensional Balancing, Lucas-Balancing, Lucas-Cobalancing and Cobalancing Numbers [J].
Chimpanzo, J. ;
Catarino, P. ;
Otero-Espinar, M. V. .
JOURNAL OF MATHEMATICAL EXTENSION, 2024, 18 (04) :1-20
[30]   Two generalizations of dual-complex Lucas-balancing numbers [J].
Brod, Dorota ;
Szynal-Liana, Anetta ;
Wloch, Iwona .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2022, 14 (02) :220-230