On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers

被引:0
作者
Rihane, Salah Eddine [1 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
关键词
k-Fibonacci numbers; Balancing numbers; Lucas-Balancing numbers; Linear form in logarithms; Reduction method; DIOPHANTINE EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Balancing number n and the balancer r are solution of the Diophantine equation 1 + 2 + ... +(n - 1) = (n + 1) + (n + 2) + ... + (n + r). It is well known that if n is balancing number, then 8n(2) + 1 is a perfect square and its positive square root is called a Lucas-Balancing number. Let k >= 2. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequences. For these sequence the first k terms are 0, ... , 0, 1 and each term afterwards is the sum of the preceding k terms. In this manuscript, our main objective is to find all k-Fibonacci numbers which are the product of two Balancing or Lucas-Balancing numbers.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 50 条
  • [21] Certain Diophantine equations involving balancing and Lucas-balancing numbers
    Ray, Prasanta Kumar
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (02): : 165 - 173
  • [22] Tridiagonal matrices related to subsequences of balancing and Lucas-balancing numbers
    Ray, Prasanta K.
    Panda, Gopal K.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2015, 21 (03) : 56 - 63
  • [23] On the properties of Lucas-balancing numbers by matrix method
    Ray, Prasanta K.
    SIGMAE, 2014, 3 (01): : 1 - 6
  • [24] Balancing and Lucas-Balancing hybrid numbers and some identities
    Uysal, Mine
    Ozkan, Engin
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (05) : 1293 - 1304
  • [25] k-Fibonacci and k-Lucas numbers as (l, m)-antipalindromic numbers
    Brahmi, Adel
    Mokhtar, Ahmed Ait
    Rihane, Salah Eddine
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (02):
  • [26] Sum formulas involving powers of balancing and Lucas-balancing numbers - II
    Rayaguru, S. G.
    Panda, G. K.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (03) : 102 - 110
  • [27] On Generating Matrices of the Bidimensional Balancing, Lucas-Balancing, Lucas-Cobalancing and Cobalancing Numbers
    Chimpanzo, J.
    Catarino, P.
    Otero-Espinar, M. V.
    JOURNAL OF MATHEMATICAL EXTENSION, 2024, 18 (04) : 1 - 20
  • [28] FERMAT k-FIBONACCI AND k-LUCAS NUMBERS
    Bravo, Jhon J.
    Herrera, Jose L.
    MATHEMATICA BOHEMICA, 2020, 145 (01): : 19 - 32
  • [29] Two generalizations of dual-complex Lucas-balancing numbers
    Brod, Dorota
    Szynal-Liana, Anetta
    Wloch, Iwona
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2022, 14 (02) : 220 - 230
  • [30] Bidimensional balancing, Lucas-balancing, cobalancing and Lucas-cobalancing numbers via the determinant of a tridiagonal matrix
    Chimpanzo, J.
    Catarino, P.
    Otero-Espinar, M. V.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,