On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers

被引:0
作者
Rihane, Salah Eddine [1 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
关键词
k-Fibonacci numbers; Balancing numbers; Lucas-Balancing numbers; Linear form in logarithms; Reduction method; DIOPHANTINE EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Balancing number n and the balancer r are solution of the Diophantine equation 1 + 2 + ... +(n - 1) = (n + 1) + (n + 2) + ... + (n + r). It is well known that if n is balancing number, then 8n(2) + 1 is a perfect square and its positive square root is called a Lucas-Balancing number. Let k >= 2. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequences. For these sequence the first k terms are 0, ... , 0, 1 and each term afterwards is the sum of the preceding k terms. In this manuscript, our main objective is to find all k-Fibonacci numbers which are the product of two Balancing or Lucas-Balancing numbers.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 18 条
[1]  
Behera A, 1999, FIBONACCI QUART, V37, P98
[2]   A DIOPHANTINE EQUATION IN k-FIBONACCI NUMBERS AND REPDIGITS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Luca, Florian .
COLLOQUIUM MATHEMATICUM, 2018, 152 (02) :299-315
[3]   POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Luca, Florian .
MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) :85-100
[4]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
[5]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[6]  
De Weger B. M. M, 1989, CWI Tracts, V65
[7]   Diophantine equations concerning balancing and Lucas balancing numbers [J].
Dey, Pallab Kanti ;
Rout, Sudhansu Sekhar .
ARCHIV DER MATHEMATIK, 2017, 108 (01) :29-43
[8]  
Dresden GPB, 2014, J INTEGER SEQ, V17
[9]   Fibonacci numbers which are products of two balancing numbers [J].
Erduvan, Fatih ;
Keskin, Refik .
ANNALES MATHEMATICAE ET INFORMATICAE, 2019, 50 :57-70
[10]   HOUSE PROBLEM [J].
FINKELSTEIN, R .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10) :1082-+