Bounds and constructions of optimal symbol-pair codes with constant pair-weight

被引:0
|
作者
Zhao, Mengzhen [1 ]
Chang, Yanxun [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Symbol-pair code; Constant pair-weight; Bound; Optimal; DISTANCE;
D O I
10.1007/s10623-025-01598-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Symbol-pair codes introduced by Cassuto and Blaum in 2010 are designed to protect against pair errors in symbol-pair read channels. This special channel structure is motivated by the limitations of the reading process in high density data storage systems, where it is no longer possible to read individual symbols. In this work, we study bounds and constructions of codes in symbol-pair metric. By using some combinatorial structures, we give constructions of optimal q-ary symbol-pair codes with constant pair-weight wp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_p$$\end{document} and pair-distance 2wp-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2w_p-1$$\end{document} for some length n, and some optimal q-ary codes with pair-weight wp=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_p=3,4$$\end{document} for all pair-distance between 3 and 2wp-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2w_p-1$$\end{document}.
引用
收藏
页数:20
相关论文
共 26 条
  • [1] Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions
    Chen, Bocong
    Lin, Liren
    Liu, Hongwei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (12) : 7661 - 7666
  • [2] Bounds and Constructions of Codes Over Symbol-Pair Read Channels
    Elishco, Ohad
    Gabrys, Ryan
    Yaakobi, Eitan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) : 1385 - 1395
  • [3] New Bounds on the Code Size of Symbol-Pair Codes
    Chen, Bocong
    Liu, Hongwei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (02) : 941 - 950
  • [4] A new class of AMDS symbol-pair codes
    Tang, Xiuxin
    Luo, Rong
    2022 10TH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2022, : 82 - 85
  • [5] Two New Classes of MDS Symbol-Pair Codes
    Kai, Xiaoshan
    Zhou, Yajing
    Zhu, Shixin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 7701 - 7710
  • [6] Codes Correcting Synchronization Errors for Symbol-Pair Read Channels
    Chee, Yeow Meng
    Van Khu Vu
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 746 - 750
  • [7] MDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 121 - 137
  • [8] New Families of MDS Symbol-Pair Codes From Matrix-Product Codes
    Luo, Gaojun
    Ezerman, Martianus Frederic
    Ling, San
    Pan, Xu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (03) : 1567 - 1587
  • [9] Cyclic codes of length 5p with MDS symbol-pair
    Li, Fengwei
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (05) : 1873 - 1888
  • [10] AMDS symbol-pair codes from repeated-root cyclic codes
    Ma, Junru
    Luo, Jinquan
    DISCRETE MATHEMATICS, 2023, 346 (07)