SHOWERHEAD FILM COOLING MECHANISM AND SUPERPOSITION CHARACTERISTICS OF TURBINE BLADE LEADING-EDGE

被引:0
|
作者
Li, Bing-ran [1 ]
Zhou, Tian-liang [1 ]
Liu, Cun-liang [1 ]
Ye, Lin [1 ]
Zhang, Fan [1 ]
机构
[1] Northwestern Polytech Univ, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Film cooling; leading-edge; film superposition; numerical simulation; pressure-sensitive paint; HOLES;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Based on the turbine blade model, the film cooling effectiveness data of single rows of holes at different positions were obtained through numerical simulation, and the superposition characteristics of multiple rows of holes under different average blowing ratios were studied. The applicability of the Sellers superposition formula to the blade leading-edge is discussed. The showerhead film cooling effectiveness distribution of the leading-edge was studied through pressure sensitive paint (PSP) experimental measurement, and the numerical simulation method was verified. The results show that the Sellers superposition formula accurately predicts the average film cooling effectiveness on the leading-edge surface under small and medium blowing ratios. Under large blowing ratios, the prediction accuracy of the superposition formula is significantly reduced. The strong interference of the mainstream and secondary jet flow and the formation of a vortex tube between multiple rows of holes are the main reasons for the failure of the two-dimensional superposition formula and the formation of a sheet-shaped high-film cooling effectiveness area under a large blowing ratio. Changes in the row-of-holes layout have an impact on the film cooling effectiveness distribution but have little effect on the prediction of the area average by the Sellers superposition formula. The experimental measurement data of film cooling effectiveness at large blowing ratios combined with the Sellers superposition formula constitute a reference for designing leading-edge showerhead film cooling structures, which have important application value for engineering design.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Influence of Film Cooling Unsteadiness on Turbine Blade Leading Edge Heat Flux
    Rutledge, James L.
    King, Paul I.
    Rivir, Richard B.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (07):
  • [42] Film cooling with compound angle holes in leading edge of twisted turbine blade
    Ren M.
    Liu C.
    Du K.
    Zhang L.
    Zhu H.
    Zhang B.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (18):
  • [43] COMPARISON OF SHOWERHEAD JET IMPINGEMENT CONFIGURATIONS ON LEADING EDGE OF A GAS TURBINE BLADE
    Singh, Alankrita
    Prasad, B. V. S. S. S.
    PROCEEDINGS OF THE ASME GAS TURBINE INDIA CONFERENCE, 2019, VOL 1, 2020,
  • [44] ENERGY-LOSSES AT MULTI-LINE STREAM COOLING OF A TURBINE BLADE LEADING-EDGE
    RUMYANTSEV, VV
    MAKOV, IP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1984, (01): : 37 - 40
  • [45] Experiment of composite cooling on leading edge of turbine blade
    You, Liangping
    Tao, Yujia
    Cai, Jun
    Liang, Shiqiang
    Huai, Xiulan
    Gu, Weizao
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2009, 30 (09): : 1618 - 1623
  • [46] Influence of hole angle and shaping on leading edge showerhead film cooling
    Lu, Yiping
    Allison, David
    Ekkad, Srinath V.
    Proceedings of the ASME Turbo Expo 2006, Vol 3, Pts A and B: HEAT TRANSFER: GENERAL INTEREST, 2006, : 375 - 382
  • [47] Film cooling characteristics on the leading edge of a rotating turbine blade with various mainstream Reynolds numbers and coolant densities
    Li, Hai-wang
    Han, Feng
    Wang, Hai-chao
    Zhou, Zhi-yu
    Tao, Zhi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 833 - 846
  • [48] Effects of film cooling hole locations on flow and heat transfer characteristics of impingement/effusion cooling at turbine blade leading edge
    Zhou, Junfei
    Wang, Xinjun
    Li, Jun
    Li, Yandong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 192 - 205
  • [49] Numerical investigation about backflow of film cooling in static turbine blade leading edge
    Gao, Chao
    Li, Haiwang
    Zhou, Huimin
    Ma, Yiwen
    You, Ruquan
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (11)
  • [50] Investigation of film cooling on the leading edge of turbine blade based on detached eddy simulation
    LIANG JunYu & KANG Shun Key Laboratory of Condition Monitor and Control for Power Plant Equipment of Ministry of Education
    Science China(Technological Sciences), 2012, (08) : 2191 - 2198