Nematicidal and plant growth-promoting rhizobacteria: a sustainable strategy for controlling Tylenchulus semipenetrans and enhancing citrus growth

被引:1
|
作者
Zoubi, Btissam [1 ,4 ,5 ]
Hijri, Mohamed [2 ,3 ]
Mokrini, Fouad [4 ]
Housseini, Abdelilah Iraqi [1 ]
Qaddoury, Ahmed [5 ]
机构
[1] USMBA, Fac Sci, Lab Biotechnol Environm Agrifood & Hlth, Dhar El Mahraz, Fes, Morocco
[2] Univ Montreal, Inst Rech Biol Vegetale IRBV, Dept Sci Biol, Montreal, PQ, Canada
[3] Univ Mohammed VI Polytech UM6P, African Genome Ctr, Ben Guerir, Morocco
[4] Natl Inst Agr Res, Biotechnol Res Unit, CRRA Rabat, Nematol Laboraotory, Rabat, Morocco
[5] Cadi Ayyad Univ, Ctr Agrobiotechnol & Bioengn, Res Unit Labeled CNRST, Marrakech, Morocco
关键词
Nematicidal activity; T; semipenetrans; Citrus; PGPR; Biological control; BACTERIA; NEMATODE; RHIZOSPHERE; SOIL;
D O I
10.1007/s10123-025-00652-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tylenchulus semipenetrans is a soil-borne pathogen that causes substantial damage and economic losses to citrus crops worldwide. Due to the high toxicity of chemical nematicides to humans and the environment, biocontrol bacteria have emerged as a promising alternative for managing citrus nematodes. This study aimed to screen bacterial strains for their efficacy to control T. semipenetrans and assess their impact on citrus plant growth. A total of 107 bacterial strains were isolated from the soil and roots of infested citrus trees. Among these, five strains exhibited significant nematicidal activity against T. semipenetrans. Four bacterial densities were tested for each strain: 3.6 x 10(5), 2.5 x 10(4), 3.6 x 10(3), and 1.2 x 10(3) cells/ml. These strains were tested both individually and in combination to evaluate their efficacy. The five strains were identified as Variovorax paradoxus, Bacillus pseudomycoides, Bacillus simplex, Bacillus cereus, and Paracoccus speluncae based on physiological, biochemical, and molecular (16S rRNA gene sequences) analyses. Juvenile mortality (J2s) and egg hatching inhibition were positively correlated with bacterial concentration and exposure duration. The highest juvenile mortality (100%) was observed with a combination of all five bacteria (3.6 x 10(5) cells/ml) after 96 h, while B. cereus alone achieved 98.98% mortality. The maximum nematicidal activities of the bacterial filtrates were generally observed between the 4th and 6th days of incubation, coinciding with peak bacterial growth and biomass production. The selected isolates also demonstrated the ability to produce indole acetic acid and solubilize phosphorus. In greenhouse experiments, the five isolates reduced T. semipenetrans populations by up to 62.96% compared to the control. Additionally, all rhizosphere bacteria and their combination significantly enhanced plant growth parameters (p < 0.0001). Notably, P. speluncae BR21 has not previously been tested for nematicidal effects on any nematode, making this the first documented report of its nematicidal potential.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Effectiveness of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Chromium Stressed Soils
    Gupta, Pratishtha
    Rani, Rupa
    Chandra, Avantika
    Varjani, Sunita J.
    Kumar, Vipin
    WASTE BIOREMEDIATION, 2018, : 301 - 312
  • [22] Current Perspectives on Plant Growth-Promoting Rhizobacteria
    Parray, Javid A.
    Jan, Sumira
    Kamili, Azra N.
    Qadri, Raies A.
    Egamberdieva, Dilfuza
    Ahmad, Parvaiz
    JOURNAL OF PLANT GROWTH REGULATION, 2016, 35 (03) : 877 - 902
  • [23] Halotolerant Plant Growth-Promoting Rhizobacteria Induce Salinity Tolerance in Wheat by Enhancing the Expression of SOS Genes
    Haroon, Urooj
    Khizar, Maria
    Liaquat, Fiza
    Ali, Musrat
    Akbar, Mahnoor
    Tahir, Kinza
    Batool, Syeda Saira
    Kamal, Asif
    Chaudhary, Hassan Javed
    Munis, Muhammad Farooq Hussain
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (06) : 2435 - 2448
  • [24] Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight
    Della Monica, Ivana F.
    Villarreal, Arnoldo Wong
    Rubio, Pablo J. Stefanoni
    Vaca-Paulin, Rocio
    Yanez-Ocampo, Gustavo
    ARCHIVES OF MICROBIOLOGY, 2022, 204 (06)
  • [25] Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion
    Majeed, Afshan
    Abbasi, M. Kaleem
    Hameed, Sohail
    Imran, Asma
    Rahim, Nasir
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [26] Plant growth-promoting rhizobacteria and their potential as bioinoculants on Pennisetum clandestinum (Poaceae)
    Romero-Perdomo, Felipe
    Ocampo-Gallego, Jhonnatan
    Camelo-Rusinque, Mauricio
    Bonilla, Ruth
    REVISTA DE BIOLOGIA TROPICAL, 2019, 67 (04) : 825 - 832
  • [27] ISOLATION AND CHARACTERIZATION OF PLANT GROWTH PROMOTING RHIZOBACTERIA AND THEIR APPLICATION IN PLANT GROWTH
    Walia, Meenu
    Batra, Navneet
    Goyal, Sneh
    LEGUME RESEARCH, 2014, 37 (01) : 72 - 78
  • [28] Effects of plant growth-promoting rhizobacteria on blueberry growth and rhizosphere soil microenvironment
    Wang, Mengjiao
    Yang, Xinlong
    PEERJ, 2024, 12
  • [29] Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth
    Farina, Roberto
    Beneduzi, Anelise
    Ambrosini, Adriana
    de Camposa, Samanta B.
    Lisboa, Bruno Brito
    Wendisch, Volker
    Vargas, Luciano K.
    Passaglia, Luciane M. P.
    APPLIED SOIL ECOLOGY, 2012, 55 : 44 - 52
  • [30] Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings
    Liu, Fangchun
    Xing, Shangjun
    Ma, Hailin
    Du, Zhenyu
    Ma, Bingyao
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (10) : 4617 - 4625