CT-Less Whole-Body Bone Segmentation of PET Images Using a Multimodal Deep Learning Network

被引:0
作者
Bao, Nan [1 ]
Zhang, Jiaxin [2 ]
Li, Zhikun [1 ]
Wei, Shiyu [3 ]
Zhang, Jiazhen [4 ]
Greenwald, Stephen E. [5 ]
Onofrey, John A. [6 ]
Lu, Yihuan [7 ]
Xu, Lisheng [1 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang 110167, Peoples R China
[2] Dahua Technol Co Ltd, Image Algorithm Dept, Hangzhou 310053, Peoples R China
[3] Liaoning Med Device Test Inst, Med Imaging & Software Dept, Shenyang 110179, Peoples R China
[4] Yale Univ, Dept Biomed Engn, New Haven, CT 06512 USA
[5] Queen Mary Univ London, Blizard Inst, Barts & London Sch Med & Dent, London E1 4NS, England
[6] Yale Univ, Dept Biomed Engn, Dept Radiol & Biomed Imaging, New Haven, CT 06512 USA
[7] United Imaging Healthcare, Shanghai 201807, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Computed tomography; Bones; Tumors; Cancer; Attenuation; Accuracy; Positron emission tomography; Image coding; Electronic mail; CT-less; deep learning; multimodal feature fusion; PET; whole-body bone segmentation; FDG-PET; TUMORS; RECONSTRUCTION; ATTENUATION; FUSION;
D O I
10.1109/JBHI.2024.3501386
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In bone cancer imaging, positron emission tomography (PET) is ideal for the diagnosis and staging of bone cancers due to its high sensitivity to malignant tumors. The diagnosis of bone cancer requires tumor analysis and localization, where accurate and automated wholebody bone segmentation (WBBS) is often needed. Current WBBS for PET imaging is based on paired Computed Tomography (CT) images. However, mismatches between CT and PET images often occur due to patient motion, which leads to erroneous bone segmentation and thus, to inaccurate tumor analysis. Furthermore, there are some instances where CT images are unavailable for WBBS. In this work, we propose a novel multimodal fusion network (MMF-Net) for WBBS of PET images, without the need for CT images. Specifically, the tracer activity (lambda-MLAA), attenuation map (mu-MLAA), and synthetic attenuation map (mu-DL) images are introduced into the training data. We first design a multi-encoder structure employed to fully learn modalityspecific encoding representations of the three PET modality images through independent encoding branches. Then, we propose a multimodal fusion module in the decoder to further integrate the complementary information across the three modalities. Additionally, we introduce revised convolution units, SE (Squeeze-and-Excitation) Normalization and deep supervision to improve segmentation performance. Extensive comparisons and ablation experiments, using 130 whole-body PET image datasets, show promising results. We conclude that the proposed method can achieve WBBS with moderate to high accuracy using PET information only, which potentially can be used to overcome the current limitations of CT-based approaches, while minimizing exposure to ionizing radiation.
引用
收藏
页码:1151 / 1164
页数:14
相关论文
共 67 条
[1]   FDG PET of primary benign and malignant bone tumors: Standardized uptake value in 52 lesions [J].
Aoki, J ;
Watanabe, H ;
Shinozaki, T ;
Takagishi, K ;
Ishijima, H ;
Oya, N ;
Sato, N ;
Inoue, T ;
Endo, K .
RADIOLOGY, 2001, 219 (03) :774-777
[2]   Automated quantification of PET/CT skeletal tumor burden in prostate cancer using artificial intelligence: The PET index [J].
Belal, Sarah Lindgren ;
Larsson, Mans ;
Holm, Jorun ;
Buch-Olsen, Karen Middelbo ;
Soerensen, Jens ;
Bjartell, Anders ;
Edenbrandt, Lars ;
Tragardh, Elin .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (05) :1510-1520
[3]   3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer [J].
Belal, Sarah Lindgren ;
Sadik, May ;
Kaboteh, Reza ;
Hasani, Nezar ;
Enqvist, Olof ;
Svarm, Linus ;
Kahl, Fredrik ;
Simonsen, Jane ;
Poulsen, Mads H. ;
Ohlsson, Mattias ;
Hoilund-Carlsen, Poul F. ;
Edenbrandt, Lars ;
Tragardh, Elin .
EJNMMI RESEARCH, 2017, 7
[4]   Bone Cancer [J].
Biermann, J. Sybil ;
Adkins, Douglas R. ;
Benjamin, Robert S. ;
Brigman, Brian ;
Chow, Warren ;
Conrad, Ernest U., III ;
Frassica, Deborah A. ;
Frassica, Frank J. ;
George, Suzanne ;
Hande, Kenneth R. ;
Hornicek, Francis J. ;
Letson, G. Douglas ;
Mayerson, Joel ;
McGarry, Sean V. ;
McGrath, Brian ;
Morris, Carol D. ;
O'Donnell, Richard J. ;
Randall, R. Lor ;
Santana, Victor M. ;
Satcher, Robert L. ;
Siegel, Herrick J. ;
Somaiah, Neeta ;
Yasko, Alan W. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2010, 8 (06) :688-712
[5]   Segmentation of Skeleton and Organs in Whole-Body CT Images via Iterative Trilateration [J].
Bieth, Marie ;
Peter, Loic ;
Nekolla, Stephan G. ;
Eiber, Matthias ;
Langs, Georg ;
Schwaiger, Markus ;
Menze, Bjoern .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (11) :2276-2286
[6]   Exploring New Multimodal Quantitative Imaging Indices for the Assessment of Osseous Tumor Burden in Prostate Cancer Using 68Ga-PSMA PET/CT [J].
Bieth, Marie ;
Kroenke, Markus ;
Tauber, Robert ;
Dahlbender, Marielena ;
Retz, Margitta ;
Nekolla, Stephan G. ;
Menze, Bjoern ;
Maurer, Tobias ;
Eiber, Matthias ;
Schwaiger, Markus .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (10) :1632-1637
[7]   An accurate method for correction of head movement in PET [J].
Bühler, P ;
Just, U ;
Will, E ;
Kotzerke, J ;
van den Hoff, J .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (09) :1176-1185
[8]   Non-Rigid Event-by-Event Continuous Respiratory Motion Compensated List-Mode Reconstruction for PET [J].
Chan, Chung ;
Onofrey, John ;
Jian, Yiqiang ;
Germino, Mary ;
Papademetris, Xenophon ;
Carson, Richard E. ;
Liu, Chi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) :504-515
[9]   3D Dilated Multi-fiber Network for Real-Time Brain Tumor Segmentation in MRI [J].
Chen, Chen ;
Liu, Xiaopeng ;
Ding, Meng ;
Zheng, Junfeng ;
Li, Jiangyun .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :184-192
[10]   Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion [J].
Chen, Cheng ;
Dou, Qi ;
Jin, Yueming ;
Chen, Hao ;
Qin, Jing ;
Pheng-Ann Heng .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :447-456