Organic Intercalation Induced Kinetic Enhancement of Vanadium Oxide Cathodes for Ultrahigh-Loading Aqueous Zinc-Ion Batteries

被引:0
|
作者
Song, Zhihang [1 ]
Zhao, Yi [2 ]
Zhou, Anbin [1 ]
Wang, Huirong [1 ]
Jin, Xiaoyu [1 ]
Huang, Yongxin [1 ,2 ]
Li, Li [1 ,2 ,3 ]
Wu, Feng [1 ,2 ,3 ]
Chen, Renjie [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Dept Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Technol Res Inst Jinan, Jinan 250300, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; polymer intercalation; vanadium-based oxides; zinc-ion batteries; PERFORMANCE; PENTOXIDE; V2O5; POLYANILINE; RICH;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vanadium-based oxides have attracted much attention because of their rich valences and adjustable structures. The high theoretical specific capacity contributed by the two-electron-transfer process (V5+/V3+) makes it an ideal cathode material for aqueous zinc-ion batteries. However, slow diffusion kinetics and poor structural stability limit the application of vanadium-based oxides. Herein, a strategy for intercalating organic matter between vanadium-based oxide layers is proposed to attain high rate performance and long cycling life. The V3O7 center dot H2O is synthesized in situ on the carbon cloth to form an open porous structure, which provides sufficient contact areas with electrolyte and facilitates zinc ion transport. On the molecular level, the added organic matter p-aminophenol (pAP) not only plays a supporting role in the V3O7 center dot H2O layer, but also shows a regulatory effect on the V5+/V4+ redox process due to the reducing functional group on pAP. The novel composite electrode with porous structure exhibits outstanding reversible specific capacity (386.7 mAh g(-1), 0.1 A g(-1)) at a high load of 6.5 mg cm(-2), and superior capacity retention of 80% at 3 A g(-1) for 2100 cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Revealing the role of calcium ion intercalation of hydrated vanadium oxides for aqueous zinc-ion batteries
    Tao Zhou
    Xuan Du
    Guo Gao
    Journal of Energy Chemistry, 2024, 95 (08) : 9 - 19
  • [22] Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries
    Venkatesan, R.
    Bauri, Ranjit
    Mayuranathan, Kishore Kumar
    ENERGY & FUELS, 2022, 36 (14) : 7854 - 7864
  • [23] High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes
    Li Y.
    Yang W.
    Yang W.
    Huang Y.
    Wang G.
    Xu C.
    Kang F.
    Dong L.
    Journal of Energy Chemistry, 2021, 60 : 233 - 240
  • [24] High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes
    Yang Li
    Wang Yang
    Wu Yang
    Yongfeng Huang
    Guoxiu Wang
    Chengjun Xu
    Feiyu Kang
    Liubing Dong
    Journal of Energy Chemistry , 2021, (09) : 233 - 240
  • [25] High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes
    Li, Yang
    Yang, Wang
    Yang, Wu
    Huang, Yongfeng
    Wang, Guoxiu
    Xu, Chengjun
    Kang, Feiyu
    Dong, Liubing
    JOURNAL OF ENERGY CHEMISTRY, 2021, 60 : 233 - 240
  • [26] Unlocking the performance degradation of vanadium-based cathodes in aqueous zinc-ion batteries
    Li, Weijian
    Jiang, Weikang
    Zhu, Kaiyue
    Wang, Zhengsen
    Xie, Weili
    Yang, Hanmiao
    Ma, Manxia
    Yang, Weishen
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [27] Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges, and Strategies
    Zhu, Kaiyue
    Yang, Weishen
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (19) : 2887 - 2900
  • [28] Recent Developments and Challenges of Vanadium Oxides (VxOy) Cathodes for Aqueous Zinc-Ion Batteries
    Zhou, Tao
    Han, Qing
    Xie, Lingling
    Yang, Xinli
    Zhu, Limin
    Cao, Xiaoyu
    CHEMICAL RECORD, 2022, 22 (04):
  • [29] Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments
    Mathew, Vinod
    Sambandam, Balaji
    Kim, Seokhun
    Kim, Sungjin
    Park, Sohyun
    Lee, Seulgi
    Alfaruqi, Muhammad Hilmy
    Soundharrajan, Vaiyapuri
    Islam, Saiful
    Putro, Dimas Yunianto
    Hwang, Jang-Yeon
    Sun, Yang-Kook
    Kim, Jaekook
    ACS ENERGY LETTERS, 2020, 5 (07) : 2376 - 2400
  • [30] Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries
    Pan, Qing
    Dong, Ran
    Lv, Huizhen
    Sun, Xiaoqi
    Song, Yu
    Liu, Xiao-Xia
    CHEMICAL ENGINEERING JOURNAL, 2021, 419