A deep learning-based approach with two-step minority classes prediction for intrusion detection in Internet of Things networks

被引:0
|
作者
Maoudj, Salah Eddine [1 ]
Belghiat, Aissam [1 ]
机构
[1] Univ Jijel, Fac Exact Sci & Comp Sci, LaRIA Lab, Jijel 18000, Algeria
关键词
Intrusion detection; Internet of Things; Deep learning; Class imbalance; Class weight; DETECTION SYSTEM; NEURAL-NETWORKS;
D O I
10.1016/j.knosys.2025.113143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rise of Internet of Things (IoT) technology has significantly enhanced several aspects of our modern life, from smart homes and cities to healthcare and industry. However, the distributed nature of IoT devices and the highly dynamic functioning of their environments introduce additional security challenges compared to conventional networks. Moreover, the datasets used to construct intrusion detection systems (IDS) are intrinsically imbalanced. Existing balancing techniques can address this issue with partially imbalanced datasets. However, their efficiency is limited when dealing with highly imbalanced datasets. Asa result, the IDS delivers a humble performance that dissatisfies the IoT-based systems requirements. Therefore, novel approaches must be investigated to address this issue. In this paper, we propose a deep learning-based approach with two-step minority classes prediction to enhance intrusion detection in IoT networks. As our main model, we employ a one-dimensional convolutional neural network (1-D CNN), which predicts network traffic with a single output for the minority classes. Additionally, another 1-D CNN is trained on these minorities, but it only performs a second prediction if the first model classifies the output as the minority group. Furthermore, we utilize the class weight technique to achieve more balance in the models' learning. We evaluated the proposed approach on the UNSW-NB15 and BoT-IoT datasets, two well-known benchmarks in building IDS for IoT networks. Compared to state-of-the-art methods, our approach revealed superior performance, achieving 80.65% and 99.99% accuracy in the multi-classification, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Internet of Things: A survey on machine learning-based intrusion detection approaches
    da Costa, Kelton A. P.
    Papa, Joao P.
    Lisboa, Celso O.
    Munoz, Roberto
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 151 : 147 - 157
  • [22] A Survey of Deep Learning Technologies for Intrusion Detection in Internet of Things
    Liao, Han
    Murah, Mohd Zamri
    Hasan, Mohammad Kamrul
    Aman, Azana Hafizah Mohd
    Fang, Jin
    Hu, Xuting
    Khan, Atta Ur Rehman
    IEEE ACCESS, 2024, 12 : 4745 - 4761
  • [23] A Deep Learning-Based Intrusion Detection Model Integrating Convolutional Neural Network and Vision Transformer for Network Traffic Attack in the Internet of Things
    Du, Chunlai
    Guo, Yanhui
    Zhang, Yuhang
    ELECTRONICS, 2024, 13 (14)
  • [24] Optimized deep learning-based intrusion detection for wireless sensor networks
    Vembu, Gowdhaman
    Ramasamy, Dhanapal
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2023, 36 (13)
  • [25] A deep learning-based intrusion detection system for in-vehicle networks
    Alqahtani, Hamed
    Kumar, Gulshan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [26] A hybrid deep learning-based intrusion detection system for IoT networks
    Khan, Noor Wali
    Alshehri, Mohammed S.
    Khan, Muazzam A.
    Almakdi, Sultan
    Moradpoor, Naghmeh
    Alazeb, Abdulwahab
    Ullah, Safi
    Naz, Naila
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13491 - 13520
  • [27] A secure and efficient deep learning-based intrusion detection framework for the internet of vehicles
    Hasim Khan
    Ghanshyam G. Tejani
    Rayed AlGhamdi
    Sultan Alasmari
    Naveen Kumar Sharma
    Sunil Kumar Sharma
    Scientific Reports, 15 (1)
  • [28] A flow-based intrusion detection framework for internet of things networks
    Santos, Leonel
    Goncalves, Ramiro
    Rabadao, Carlos
    Martins, Jose
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (01): : 37 - 57
  • [29] A survey on Deep Learning based Intrusion Detection Systems on Internet of Things
    Tamilslevi, S.
    Visalakshi, P.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 1488 - 1496
  • [30] An Efficient Deep Learning-based Intrusion Detection System for Internet of Things Networks with Hybrid Feature Reduction and Data Balancing Techniques
    Karamollaoglu, Hamdullah
    Dogru, Ibrahim Alper
    Yucedag, Ibrahim
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (01): : 243 - 261