Extracellular HSP70 facilitated (3-glucan induced trained immunity in macrophages to suppress sepsis via TLR2-NF-κB axis

被引:0
作者
Qi, Ran [1 ]
Cheng, Xin [2 ]
Chen, Shan [1 ]
Fan, Jinjun [1 ]
机构
[1] Second Children & Womens Healthcare Jinan City, Dept Clin Lab, Jinan, Shandong, Peoples R China
[2] Jinan City Peoples Hosp, Dept Clin Lab, Jinan, Shandong, Peoples R China
关键词
Trained immunity; Sepsis; HSP70; TLR2; Macrophages; TOLL-LIKE RECEPTORS; INNATE IMMUNITY; HEAT-SHOCK-PROTEIN-70; HSP70; T-CELL; EXPRESSION; PROTEINS; SHOCK; LYMPHOCYTES;
D O I
10.1016/j.cyto.2025.156861
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sepsis is a common systemic infectious disease followed by extremely high incidence and mortality with no effective treatment and clinical drugs. As a key mediator involved in infection and immunity, it has been reported that sepsis patients are accompanied by increased heat shock protein 70 (HSP70). Trained immunity is a novel innate immunity approach that can be activated by (3-glucan to fight against sepsis. The mechanism of HSP70 activating trained macrophages against sepsis needs further elucidation. Trained immunity and sepsis models were established by (3-glucan and LPS individually both in vivo and in vitro. We demonstrated that HSP70 was significantly upregulated in septic mice serum, and HSP70 could protect mice from sepsis by activating (3-glucantrained macrophages as an ideal secondary inducer via TLR2-NF-kappa B pathway. Additionally, the sepsis resistant effects of HSP70 could be blocked by its antibody. In summary, more than a molecular chaperone to maintain homeostasis, HSP70 could be an important trained immunity inducer to help the body fighting against sepsis, which provided new stimuli for trained immunity and novel therapeutic solutions for sepsis.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Metabolic trade-offs in Neonatal sepsis triggered by TLR4 and TLR1/2 ligands result in unique dysfunctions in neural breathing circuits [J].
Alves, Michele Joana ;
Browe, Brigitte M. ;
Dias, Ana Carolina Rodrigues ;
Torres, Juliet M. ;
Zaza, Giuliana ;
Bangudi, Suzy ;
Blackburn, Jessica ;
Wang, Wesley ;
Fernandes-Junior, Silvio de Araujo ;
Fadda, Paolo ;
Toland, Amanda ;
Baer, Lisa A. ;
Stanford, Kristin I. ;
Czeisler, Catherine ;
Garcia III, Alfredo J. ;
Otero, Jose Javier .
BRAIN BEHAVIOR AND IMMUNITY, 2024, 119 :333-350
[2]   Trained Immunity: Reprogramming Innate Immunity in Health and Disease [J].
Bekkering, Siroon ;
Dominguez-Andres, Jorge ;
Joosten, Leo A. B. ;
Riksen, Niels P. ;
Netea, Mihai G. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 39, 2021, 39 :667-693
[3]   Sepsis-trained macrophages promote antitumoral tissue-resident T cells [J].
Broquet, Alexis ;
Gourain, Victor ;
Goronflot, Thomas ;
Le Mabecque, Virginie ;
Sinha, Debajyoti ;
Ashayeripanah, Mitra ;
Jacqueline, Cedric ;
Martin, Pierre ;
Davieau, Marion ;
Boutin, Lea ;
Poulain, Cecile ;
Martin, Florian P. ;
Fourgeux, Cynthia ;
Petrier, Melanie ;
Cannevet, Manon ;
Leclercq, Thomas ;
Guillonneau, Maeva ;
Chaumette, Tanguy ;
Laurent, Thomas ;
Harly, Christelle ;
Scotet, Emmanuel ;
Legentil, Laurent ;
Ferrieres, Vincent ;
Corgnac, Stephanie ;
Mami-Chouaib, Fathia ;
Mosnier, Jean Francois ;
Mauduit, Nicolas ;
McWilliam, Hamish E. G. ;
Villadangos, Jose A. ;
Gourraud, Pierre Antoine ;
Asehnoune, Karim ;
Poschmann, Jeremie ;
Roquilly, Antoine .
NATURE IMMUNOLOGY, 2024, 25 (5) :802-819
[4]   TLR2, TLR4 and the MYD88 Signaling Pathway Are Crucial for Neutrophil Migration in Acute Kidney Injury Induced by Sepsis [J].
Castoldi, Angela ;
Braga, Tarcio Teodoro ;
Correa-Costa, Matheus ;
Aguiar, Cristhiane Favero ;
Bassi, Enio Jose ;
Correa-Silva, Reinaldo ;
Elias, Rosa Maria ;
Salvador, Fabia ;
Moraes-Vieira, Pedro Manoel ;
Cenedeze, Marcos Antonio ;
Reis, Marlene Antonia ;
Hiyane, Meire Ioshie ;
Pacheco-Silva, Alvaro ;
Goncalves, Giselle Martins ;
Saraiva Camara, Niels Olsen .
PLOS ONE, 2012, 7 (05)
[5]   SEPSIS UPREGULATES CD14 EXPRESSION IN A MYD88-DEPENDENT AND TRIF-INDEPENDENT PATHWAY [J].
Chen, Zhixia ;
Shao, Zhenzhen ;
Mei, Shuya ;
Yan, Zhengzheng ;
Ding, Xibing ;
Billiar, Timothy ;
Li, Quan .
SHOCK, 2018, 49 (01) :82-89
[6]   mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity [J].
Cheng, Shih-Chin ;
Quintin, Jessica ;
Cramer, Robert A. ;
Shepardson, Kelly M. ;
Saeed, Sadia ;
Kumar, Vinod ;
Giamarellos-Bourboulis, Evangelos J. ;
Martens, Joost H. A. ;
Rao, Nagesha Appukudige ;
Aghajanirefah, Ali ;
Manjeri, Ganesh R. ;
Li, Yang ;
Ifrim, Daniela C. ;
Arts, Rob J. W. ;
van der Meer, Brian M. J. W. ;
Deen, Peter M. T. ;
Logie, Colin ;
O'Neill, Luke A. ;
Willems, Peter ;
van de Veerdonk, Frank L. ;
van der Meer, Jos W. M. ;
Ng, Aylwin ;
Joosten, Leo A. B. ;
Wijmenga, Cisca ;
Stunnenberg, Hendrik G. ;
Xavier, Ramnik J. ;
Netea, Mihai G. .
SCIENCE, 2014, 345 (6204) :1579-+
[7]   Tumor-derived inducible heat-shock protein 70 (HSP70) is an essential component of anti-tumor immunity [J].
Dodd, K. ;
Nance, S. ;
Quezada, M. ;
Janke, L. ;
Morrison, J. B. ;
Williams, R. T. ;
Beere, H. M. .
ONCOGENE, 2015, 34 (10) :1312-1322
[8]   Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity [J].
Duan, Tianhao ;
Du, Yang ;
Xing, Changsheng ;
Wang, Helen Y. Y. ;
Wang, Rong-Fu .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[9]   The Intersection of Epigenetics and Metabolism in Trained Immunity [J].
Fanucchi, Stephanie ;
Dominguez-Andres, Jorge ;
Joosten, Leo A. B. ;
Netea, Mihai G. ;
Mhlanga, Musa M. .
IMMUNITY, 2021, 54 (01) :32-43
[10]   Anti-inflammatory effect of Natterins, the major toxins from the Thalassophryne nattereri fish venom is dependent on TLR4/MyD88/PI3K signaling pathway [J].
Ferreira, Marcio Jose ;
Lima, Carla ;
Lopes-Ferreira, Monica .
TOXICON, 2014, 87 :54-67