Data-Driven Design of Mechanically Hard Soft Magnetic High-Entropy Alloys

被引:0
作者
Dai, Mian [1 ]
Zhang, Yixuan [1 ]
Li, Xiaoqing [2 ]
Schonecker, Stephan [2 ]
Han, Liuliu [3 ]
Xie, Ruiwen [1 ]
Shen, Chen [1 ]
Zhang, Hongbin [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, Alarich Weiss Str 16, Darmstadt, Germany
[2] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[3] Max Planck Inst Sustainable Mat, Max Planck Str 1, Dusseldorf, Germany
基金
瑞典研究理事会;
关键词
density functional theory; high-entropy alloys; high-throughput calculations; machine learning; mechanically hard soft magnets; PHASE; TEMPERATURES; EXPLORATION; CHALLENGES;
D O I
10.1002/advs.202500867
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design and optimization of mechanically hard soft magnetic materials, which combine high hardness with magnetically soft properties, represent a critical frontier in materials science for advanced technological applications. To address this challenge, a data-driven framework is presented for exploring the vast compositional space of high-entropy alloys (HEAs) and identifying candidates optimized for multifunctionality. The study employs a comprehensive dataset of 1 842 628 density functional theory calculations, comprising 45 886 quaternary and 414 771 quinary equimolar HEAs derived from 42 elements. Using ensemble learning, predictive models are integrated to capture the relationships between composition, crystal structure, mechanical, and magnetic properties. This framework offers a robust pathway for accelerating the discovery of next-generation alloys with high hardness and magnetic softness, highlighting the transformative impact of data-driven strategies in material design.
引用
收藏
页数:11
相关论文
共 60 条
  • [1] Thermodynamic Insights into the Oxidation Mechanisms of CrMnFeCoNi High-Entropy Alloy Using In Situ X-ray Diffraction
    Arshad, Muhammad
    Bano, Saira
    Amer, Mohamed
    Janik, Vit
    Hayat, Qamar
    Huang, Yuze
    Guan, Dikai
    Bai, Mingwen
    [J]. MATERIALS, 2023, 16 (14)
  • [2] Microstructural development in equiatomic multicomponent alloys
    Cantor, B
    Chang, ITH
    Knight, P
    Vincent, AJB
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 : 213 - 218
  • [3] A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties
    Chen, Chen
    Zhang, Hang
    Fan, Yanzhou
    Zhang, Weiwei
    Wei, Ran
    Wang, Tan
    Zhang, Tao
    Li, Fushan
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 502
  • [4] A map of single-phase high-entropy alloys
    Chen, Wei
    Hilhorst, Antoine
    Bokas, Georgios
    Gorsse, Stephane
    Jacques, Pascal J.
    Hautier, Geoffroy
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤2) high-entropy alloys
    Chou, Hsuan-Ping
    Chang, Yee-Shyi
    Chen, Swe-Kai
    Yeh, Jien-Wei
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 163 (03): : 184 - 189
  • [6] Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
  • [7] AFLOW: An automatic framework for high-throughput materials discovery
    Curtarolo, Stefano
    Setyawan, Wahyu
    Hart, Gus L. W.
    Jahnatek, Michal
    Chepulskii, Roman V.
    Taylor, Richard H.
    Wanga, Shidong
    Xue, Junkai
    Yang, Kesong
    Levy, Ohad
    Mehl, Michael J.
    Stokes, Harold T.
    Demchenko, Denis O.
    Morgan, Dane
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 218 - 226
  • [8] Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys
    Dai, Dongbo
    Xu, Tao
    Wei, Xiao
    Ding, Guangtai
    Xu, Yan
    Zhang, Jincang
    Zhang, Huiran
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 175 (175)
  • [9] Disordered enthalpy-entropy descriptor for high-entropy ceramics discovery
    Divilov, Simon
    Eckert, Hagen
    Hicks, David
    Oses, Corey
    Toher, Cormac
    Friedrich, Rico
    Esters, Marco
    Mehl, Michael J.
    Zettel, Adam C.
    Lederer, Yoav
    Zurek, Eva
    Maria, Jon-Paul
    Brenner, Donald W.
    Campilongo, Xiomara
    Filipovic, Suzana
    Fahrenholtz, William G.
    Ryan, Caillin J.
    Desalle, Christopher M.
    Crealese, Ryan J.
    Wolfe, Douglas E.
    Calzolari, Arrigo
    Curtarolo, Stefano
    [J]. NATURE, 2024, 625 (7993) : 66 - 73
  • [10] Erickson N., 2020, AutoGluonTabular: Robust and Accurate AutoML for Structured Data