Variational spatial-temporal graph attention network for state monitoring and forecasting

被引:0
|
作者
Fang, Yanchao [1 ]
Xu, Minrui [2 ]
Wang, Ye [1 ]
Yu, Yang [1 ]
Kang, Dayong [3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun, Jilin, Peoples R China
[2] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Jiangsu, Peoples R China
[3] Key Lab Electroopt Countermeasure Test & Evaluat T, Luoyang, Henan, Peoples R China
关键词
State forecasting; Spatial networks; Variational inference; Deep learning; PREDICTION; MODEL;
D O I
10.1016/j.eswa.2024.125718
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the popularity of smart devices, there has been extensive collection of data structured in graphs. Spatial graphs, in particular, have garnered significant interest owing to their diverse range of applications. In this paper, we focus on applying spatial graph model for state monitoring and forecasting, with special attention to transportation systems. In current spatial modeling approaches, understanding the structure of a spatial graph usually relies on the analysis of gathered spatial-temporal data. However, spatial graph data in real world often contains temporary factors that are not easily detected. In this paper, we propose a novel variational inference-based model VISTG, which integrates such dynamics into spatial-temporal learning of spatial graph modeling. Specifically, VISTG is primarily composed of several spatial-temporal learning blocks, each encompassing both temporal and spatial learning layers. The temporal learning layer is crafted to characterize the distributions of latent factors using a variational inference-based model, aiming to capture the dynamics within the data. Subsequently, the spatial learning layer utilizes graph attention networks to describe the correlation among nodes. Additionally, an adaptive fusion module is implemented to equalize the impact of diverse temporal patterns. Finally, comprehensive experiments are carried out on two real-world datasets. The results affirm the efficacy of our model.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Multi-Task Spatial-Temporal Graph Attention Network for Taxi Demand Prediction
    Wu, Mingming
    Zhu, Chaochao
    Chen, Lianliang
    2020 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND ARTIFICIAL INTELLIGENCE (ICMAI 2020), 2020, : 224 - 228
  • [32] Spatial-temporal correlation graph convolutional networks for traffic forecasting
    Huang, Ru
    Chen, Zijian
    Zhai, Guangtao
    He, Jianhua
    Chu, Xiaoli
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1380 - 1394
  • [33] Spatial-Temporal Fusion Graph Neural Networks With Mixed Adjacency for Weather Forecasting
    Guo, Ang
    Liu, Yanghe
    Shao, Shiyu
    Shi, Xiaowei
    Feng, Zhenni
    IEEE ACCESS, 2025, 13 : 15812 - 15824
  • [34] Deep spatial-temporal graph modeling for efficient NDVI forecasting
    Beyer, Martin
    Ahmad, Rehaan
    Yang, Brian
    Rodriguez-Bocca, Pablo
    SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [35] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao, Zhenzhen
    Shen, Guojiang
    Zhou, Junjie
    Jin, Junchen
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [36] Spatial-temporal load forecasting of electric vehicle charging stations based on graph neural network
    Zhang, Yanyu
    Liu, Chunyang
    Rao, Xinpeng
    Zhang, Xibeng
    Zhou, Yi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 821 - 836
  • [37] Adaptive Multi-receptive Field Spatial-Temporal Graph Convolutional Network for Traffic Forecasting
    Wang, Xing
    Zhao, Juan
    Zhu, Lin
    Zhou, Xu
    Li, Zhao
    Feng, Junlan
    Deng, Chao
    Zhang, Yong
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [38] Weather Forecasting Using Ensemble of Spatial-Temporal Attention Network and Multi-Layer Perceptron
    Li, Yuanpeng
    Lang, Junwei
    Ji, Lei
    Zhong, Jiqin
    Wang, Zaiwen
    Guo, Yang
    He, Sailing
    ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2021, 57 (03) : 533 - 546
  • [39] Weather Forecasting Using Ensemble of Spatial-Temporal Attention Network and Multi-Layer Perceptron
    Yuanpeng Li
    Junwei Lang
    Lei Ji
    Jiqin Zhong
    Zaiwen Wang
    Yang Guo
    Sailing He
    Asia-Pacific Journal of Atmospheric Sciences, 2021, 57 : 533 - 546
  • [40] Adaboosting graph attention recurrent network: A deep learning framework for traffic speed forecasting in dynamic transportation networks with spatial-temporal dependencies
    Zhang, Yunuo
    Wang, Xiaoling
    Yu, Jia
    Zeng, Tuocheng
    Wang, Jiajun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127