Protein kinase Hsl1 phosphorylates Pah1 to inhibit phosphatidate phosphatase activity and regulate lipid synthesis in Saccharomyces cerevisiae

被引:1
作者
Khondker, Shoily [1 ]
Han, Gil-Soo [1 ]
Carman, George M. [1 ]
机构
[1] Rutgers State Univ, Dept Food Sci, New Brunswick, NJ 08854 USA
基金
美国国家卫生研究院;
关键词
SENSITIVE PHOSPHOPROTEOME REVEALS; CYTIDINE DIPHOSPHATE CHOLINE; CROSS-PATHWAY REGULATION; ACID PHOSPHATASE; PHOSPHATIDYLSERINE SYNTHASE; PHOSPHOLIPID BIOSYNTHESIS; GLOBAL ANALYSIS; SN-1,2-DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE; MORPHOGENESIS CHECKPOINT; AFFINITY PURIFICATION;
D O I
10.1016/j.jbc.2024.107572
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, Pah1 phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, plays a key role in utilizing PA for the synthesis of the neutral lipid triacylglycerol and thereby controlling the PA-derived membrane phospholipids. The enzyme function is controlled by its subcellular location as regulated by phosphorylation and dephosphorylation. Pah1 is initially inactivated in the cytosol through phosphorylation by multiple protein kinases and then activated via its recruitment and dephosphorylation by the protein phosphatase Nem1-Spo7 at the nuclear/endoplasmic reticulum membrane where the PA phosphatase reaction occurs. Many of the protein kinases that phosphorylate Pah1 have yet to be characterized with the identification of the target residues. Here, we established Pah1 as a bona fi de substrate of septinassociated Hsl1, a protein kinase involved in mitotic morphogenesis checkpoint signaling. The Hsl1 activity on Pah1 was dependent on reaction time and the amounts of protein kinase, Pah1, and ATP. The Hsl1 phosphorylation of Pah1 occurred on Ser-748 and Ser-773, and the phosphorylated protein exhibited a 5-fold reduction in PA phosphatase catalytic efficiency. Analysis of cells expressing the S748A and S773A mutant forms of Pah1 indicated that Hsl1-mediated phosphorylation of Pah1 promotes membrane phospholipid synthesis at the expense of triacylglycerol, and ensures the dependence of Pah1 function on the Nem1-Spo7 protein phosphatase. This work advances the understanding of how Hsl1 facilitates membrane phospholipid synthesis through the phosphorylation-mediated regulation of Pah1.
引用
收藏
页数:15
相关论文
共 149 条
  • [91] LIN YP, 1990, J BIOL CHEM, V265, P166
  • [92] LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1
    Lizcano, JM
    Göransson, O
    Toth, R
    Deak, M
    Morrice, NA
    Boudeau, J
    Hawley, SA
    Udd, L
    Mäkelä, TP
    Hardie, DG
    Alessi, DR
    [J]. EMBO JOURNAL, 2004, 23 (04) : 833 - 843
  • [93] Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid
    Loewen, CJR
    Gaspar, ML
    Jesch, SA
    Delon, C
    Ktistakis, NT
    Henry, SA
    Levine, TP
    [J]. SCIENCE, 2004, 304 (5677) : 1644 - 1647
  • [94] Lussier M, 1997, GENETICS, V147, P435
  • [95] Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses
    MacGilvray, Matthew E.
    Shishkova, Evgenia
    Place, Michael
    Wagner, Ellen R.
    Coon, Joshua J.
    Gasch, Audrey P.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2020, 19 (08) : 3405 - 3417
  • [96] MCGRAW P, 1989, GENETICS, V122, P317
  • [97] McMillan JN, 1999, MOL CELL BIOL, V19, P6929
  • [98] MinSeok R, 1996, J BIOCHEM, V120, P1040
  • [99] The Spo7 sequence LLI is required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid metabolism
    Mirheydari, Mona
    Dey, Prabuddha
    Stukey, Geordan J.
    Park, Yeonhee
    Han, Gil-Soo
    Carman, George M.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (33) : 11473 - 11485
  • [100] GSK-3 kinase Mck1 and calcineurin coordinately mediate Hsl1 down-regulation by Ca2+ in budding yeast
    Mizunuma, M
    Hirata, D
    Miyaoka, R
    Miyakawa, T
    [J]. EMBO JOURNAL, 2001, 20 (05) : 1074 - 1085