Wasserstein Graph Convolutional Network with Attention for Imbalanced scRNA-seq Data Knowledge Discovery

被引:0
作者
Ren, Jie [1 ]
Han, Henry [1 ]
机构
[1] Baylor Univ, Sch Engn & Comp Sci, Lab Data Sci & Artificial Intelligence Innovat, Waco, TX 76798 USA
来源
RECENT ADVANCES IN NEXT-GENERATION DATA SCIENCE, SDSC 2024 | 2024年 / 2158卷
关键词
scRNA-seq; Wasserstein distance; data imbalance; Graph convolutional network; Attention mechanism; semi-supervised learning; SINGLE-CELL;
D O I
10.1007/978-3-031-67871-4_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discovering complex molecular patterns in imbalanced scRNA-seq data remains a challenge, despite numerous efforts from different perspectives. In this study, we propose a novel deep learning model: the Wasserstein Graph Convolutional Network with an attention mechanism (twGCN), designed for semi-supervised learning to address this challenge. The proposed model overcomes the weaknesses of traditional Graph Convolutional Networks by capturing more data intricacies and geometry. This is achieved by integrating a Wasserstein distance-based loss function optimization along with an attention mechanism. Unlike traditional scRNA-seq data preprocessing, we employ a robust scaling approach to normalize scRNA-seq data, which generally contains a large number of outliers. Our methods demonstrate significant advantages over peer methods in discovering single-cell patterns in benchmark data. More importantly, the proposed twGCN can handle both low-dimensional and high-dimensional scRNA-seq data obtained after feature selection. To our knowledge, this study will positively impact both deep learning and bioinformatics, inspiring future research.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
[21]   CellDepot: A Unified Repository for scRNA-seq Data and Visual Exploration [J].
Lin, Dongdong ;
Chen, Yirui ;
Negi, Soumya ;
Cheng, Derrick ;
Ouyang, Zhengyu ;
Sexton, David ;
Li, Kejie ;
Zhang, Baohong .
JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (11)
[22]   Detection of differentially abundant cell subpopulations in scRNA-seq data [J].
Zhao, Jun ;
Jaffe, Ariel ;
Li, Henry ;
Lindenbaum, Ofir ;
Sefik, Esen ;
Jackson, Ruaidhri ;
Cheng, Xiuyuan ;
Flavell, Richard A. ;
Kluger, Yuval .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (22)
[23]   Obstacles to detecting isoforms using full-length scRNA-seq data [J].
Jennifer Westoby ;
Pavel Artemov ;
Martin Hemberg ;
Anne Ferguson-Smith .
Genome Biology, 21
[24]   Interpretable Factors in scRNA-seq Data with Disentangled Generative Models [J].
Mao, Haiyi ;
Broerman, Matthew J. ;
Benos, Panayiotis, V .
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, :85-88
[25]   DeepIMAGER: Deeply Analyzing Gene Regulatory Networks from scRNA-seq Data [J].
Zhou, Xiguo ;
Pan, Jingyi ;
Chen, Liang ;
Zhang, Shaoqiang ;
Chen, Yong .
BIOMOLECULES, 2024, 14 (07)
[26]   Cell annotation using scRNA-seq data: A protein-protein interaction network approach [J].
Senra, Daniela ;
Guisoni, Nara ;
Diambra, Luis .
METHODSX, 2023, 10
[27]   SCReadCounts: estimation of cell-level SNVs expression from scRNA-seq data [J].
N. M. Prashant ;
Nawaf Alomran ;
Yu Chen ;
Hongyu Liu ;
Pavlos Bousounis ;
Mercedeh Movassagh ;
Nathan Edwards ;
Anelia Horvath .
BMC Genomics, 22
[28]   scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis [J].
Wang, Hai-Yun ;
Zhao, Jian-Ping ;
Su, Yan-Sen ;
Zheng, Chun-Hou .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) :3685-3694
[29]   GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data [J].
Zhang, Tianjiao ;
Zhang, Ziheng ;
Li, Liangyu ;
Dong, Benzhi ;
Wang, Guohua ;
Zhang, Dandan .
BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
[30]   SCReadCounts: estimation of cell-level SNVs expression from scRNA-seq data [J].
Prashant, N. M. ;
Alomran, Nawaf ;
Chen, Yu ;
Liu, Hongyu ;
Bousounis, Pavlos ;
Movassagh, Mercedeh ;
Edwards, Nathan ;
Horvath, Anelia .
BMC GENOMICS, 2021, 22 (01)