A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer

被引:1
作者
Zhao, Ting [1 ,2 ]
He, Jian [1 ,2 ]
Zhang, Licui [1 ,2 ]
Li, Hongyang [2 ]
Duan, Qinghong [2 ,3 ]
机构
[1] Guizhou Med Univ, Affiliated Hosp, Dept Radiol, Guiyang, Guizhou, Peoples R China
[2] Guizhou Med Univ, Coll Med Imaging, Guiyang, Guizhou, Peoples R China
[3] Guizhou Med Univ, Canc Hosp, Dept Radiol, Guiyang, Guizhou, Peoples R China
关键词
Radiomics; Combined model; Bladder cancer; Pathological grading; Deep-learning; T1; HIGH-GRADE; TRANSURETHRAL RESECTION;
D O I
10.1007/s00261-024-04748-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectiveTo construct a predictive model using deep-learning radiomics and clinical risk factors for assessing the preoperative histopathological grade of bladder cancer according to computed tomography (CT) images.MethodsA retrospective analysis was conducted involving 201 bladder cancer patients with definite pathological grading results after surgical excision at the organization between January 2019 and June 2023. The cohort was classified into a test set of 81 cases and a training set of 120 cases. Hand-crafted radiomics (HCR) and features derived from deep-learning (DL) were obtained from computed tomography (CT) images. The research builds a prediction model using 12 machine-learning classifiers, which integrate HCR, DL features, and clinical data. Model performance was estimated utilizing decision-curve analysis (DCA), the area under the curve (AUC), and calibration curves.ResultsAmong the classifiers tested, the logistic regression model that combined DL and HCR characteristics demonstrated the finest performance. The AUC values were 0.912 (training set) and 0.777 (test set). The AUC values of clinical model achieved 0.850 (training set) and 0.804 (test set). The AUC values of the combined model were 0.933 (training set) and 0.824 (test set), outperforming both the clinical and HCR-only models.ConclusionThe CT-based combined model demonstrated considerable diagnostic capability in differentiating high-grade from low-grade bladder cancer, serving as a valuable noninvasive instrument for preoperative pathological evaluation.
引用
收藏
页码:3049 / 3059
页数:11
相关论文
共 32 条
[1]   Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends [J].
Antoni, Sebastien ;
Ferlay, Jacques ;
Soerjomataram, Isabelle ;
Znaor, Ariana ;
Jemal, Ahmedin ;
Bray, Freddie .
EUROPEAN UROLOGY, 2017, 71 (01) :96-108
[2]   Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning [J].
Cha, Kenny H. ;
Hadjiiski, Lubomir ;
Chan, Heang-Ping ;
Weizer, Alon Z. ;
Alva, Ajjai ;
Cohan, Richard H. ;
Caoili, Elaine M. ;
Paramagul, Chintana ;
Samala, Ravi K. .
SCIENTIFIC REPORTS, 2017, 7
[3]   Explaining a series of models by propagating Shapley values [J].
Chen, Hugh ;
Lundberg, Scott M. ;
Lee, Su-In .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Current best practice for bladder cancer: a narrative review of diagnostics and treatments [J].
Comperat, Eva ;
Amin, Mahul B. ;
Cathomas, Richard ;
Choudhury, Ananya ;
De Santis, Maria ;
Kamat, Ashish ;
Stenzl, Arnulf ;
Thoeny, Harriet C. ;
Witjes, Johannes Alfred .
LANCET, 2022, 400 (10364) :1712-1721
[5]   Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer [J].
Deng, Zhikang ;
Dong, Wentao ;
Xiong, Situ ;
Jin, Di ;
Zhou, Hongzhang ;
Zhang, Ling ;
Xie, LiHan ;
Deng, Yaohong ;
Xu, Rong ;
Fan, Bing .
FRONTIERS IN ONCOLOGY, 2023, 13
[6]   Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscleCTradiomics and machine learning [J].
Dong, Xing ;
Dan, Xu ;
Ao Yawen ;
Xu Haibo ;
Huan, Li ;
Tu Mengqi ;
Chen Linglong ;
Zhao, Ruan .
THORACIC CANCER, 2020, 11 (09) :2650-2659
[7]   Predictors of Residual T1 High Grade on Re-Transurethral Resection in a Large Multi-Institutional Cohort of Patients with Primary T1 High-Grade/Grade 3 Bladder Cancer [J].
Ferro, Matteo ;
Di Lorenzo, Giuseppe ;
Buonerba, Carlo ;
Lucarelli, Giuseppe ;
Russo, Giorgio Ivan ;
Cantiello, Francesco ;
Abu Farhan, Abdal Rahman ;
Di Stasi, Savino ;
Musi, Gennaro ;
Hurle, Rodolfo ;
Vincenzo, Serretta ;
Busetto, Gian Maria ;
De Berardinis, Ettore ;
Perdona, Sisto ;
Borghesi, Marco ;
Schiavina, Riccardo ;
Almeida, Gilberto L. ;
Bove, Pierluigi ;
Lima, Estevao ;
Grimaldi, Giovanni ;
Matei, Deliu Victor ;
Mistretta, Francesco Alessandro ;
Crisan, Nicolae ;
Terracciano, Daniela ;
Paolo, Verze ;
Battaglia, Michele ;
Guazzoni, Giorgio ;
Autorino, Riccardo ;
Morgia, Giuseppe ;
Damiano, Rocco ;
Muto, Matteo ;
La Rocca, Roberto ;
Mirone, Vincenzo ;
de Cobelli, Ottavio ;
Vartolomei, Mihai Dorin .
JOURNAL OF CANCER, 2018, 9 (22) :4250-4254
[8]   Bladder Cancer, Version 2.2022 Featured Updates to the NCCN Guidelines [J].
Flaig, Thomas W. ;
Spiess, Philippe E. ;
Abern, Michael ;
Agarwal, Neeraj ;
Bangs, Rick ;
Boorjian, Stephen A. ;
Buyyounouski, Mark K. ;
Chan, Kevin ;
Chang, Sam ;
Friedlander, Terence ;
Greenberg, Richard E. ;
Guru, Khurshid A. ;
Herr, Harry W. ;
Hoffman-Censits, Jean ;
Kishan, Amar ;
Kundu, Shilajit ;
Lele, Subodh M. ;
Mamtani, Ronac ;
Margulis, Vitaly ;
Mian, Omar Y. ;
Michalski, Jeff ;
Montgomery, Jeffrey S. ;
Nandagopal, Lakshminarayanan ;
Pagliaro, Lance C. ;
Parikh, Mamta ;
Patterson, Anthony ;
Plimack, Elizabeth R. ;
Pohar, Kamal S. ;
Preston, Mark A. ;
Richards, Kyle ;
Sexton, Wade J. ;
Siefker-Radtke, Arlene O. ;
Tollefson, Matthew ;
Tward, Jonathan ;
Wright, Jonathan L. ;
Dwyer, Mary A. ;
Cassara, Carly J. ;
Gurski, Lisa A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (08) :866-878
[9]   Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics [J].
Gross, Moritz ;
Huber, Steffen ;
Arora, Sandeep ;
Ze'evi, Tal ;
Haider, Stefan P. ;
Kucukkaya, Ahmet S. ;
Iseke, Simon ;
Kuhn, Tom Niklas ;
Gebauer, Bernhard ;
Michallek, Florian ;
Dewey, Marc ;
Vilgrain, Valerie ;
Sartoris, Riccardo ;
Ronot, Maxime ;
Jaffe, Ariel ;
Strazzabosco, Mario ;
Chapiro, Julius ;
Onofrey, John A. .
EUROPEAN RADIOLOGY, 2024, 34 (08) :5056-5065
[10]   Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data [J].
Gui, J ;
Li, HZ .
BIOINFORMATICS, 2005, 21 (13) :3001-3008