Cramer-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI

被引:1
作者
Mao, Andrew [1 ]
Flassbeck, Sebastian [1 ]
Gultekin, Cem [2 ]
Asslander, Jakob [1 ]
机构
[1] NYU, Sch Med, Ctr Biomed Imaging, New York, NY 10016 USA
[2] NYU, Courant Inst Math Sci, New York, NY USA
关键词
Image reconstruction; Magnetic resonance imaging; Biomedical engineering; Biomedical measurement; Biomedical imaging; Accuracy; Jacobian matrices; Quantitative MRI; magnetic resonance fingerprinting; magnetization transfer; Cramer-Rao bound; subspace reconstruction; singular value decomposition; MAGNETIZATION-TRANSFER; LOW-RANK; RELAXATION-TIMES; T-1; ALGORITHM; GEOMETRY;
D O I
10.1109/TBME.2024.3446763
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: We extend the traditional framework for estimating subspace bases in quantitative MRI that maximize the preserved signal energy to additionally preserve the Cram & eacute;r-Rao bound (CRB) of the biophysical parameters and, ultimately, improve accuracy and precision in the quantitative maps. Methods: To this end, we introduce an approximate compressed CRB based on orthogonalized versions of the signal's derivatives with respect to the model parameters. This approximation permits singular value decomposition (SVD)-based minimization of both the CRB and signal losses during compression. Results: Compared to the traditional SVD approach, the proposed method better preserves the CRB across all biophysical parameters with minimal cost to the preserved signal energy, leading to reduced bias and variance of the parameter estimates in simulation. In vivo, improved accuracy and precision are observed in two quantitative neuroimaging applications. Conclusion: The proposed method permits subspace reconstruction with a more compact basis, thereby offering significant computational savings. Significance: Efficient subspace reconstruction facilitates the validation and translation of advanced quantitative MRI techniques, e.g., magnetization transfer and diffusion.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 77 条
[1]  
[Anonymous], 1991, Concepts Magn Reson, DOI [DOI 10.1002/CMR.1820030302, 10.1002/cmr.1820030302]
[2]   Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model [J].
Asslaender, Jakob ;
Gultekin, Cem ;
Mao, Andrew ;
Zhang, Xiaoxia ;
Duchemin, Quentin ;
Liu, Kangning ;
Charlson, Robert W. ;
Shepherd, Timothy M. ;
Fernandez-Granda, Carlos ;
Flassbeck, Sebastian .
MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (04) :1478-1497
[3]  
Asslaender J, 2024, Arxiv, DOI arXiv:2301.08394
[4]   Generalized Bloch model: A theory for pulsed magnetization transfer [J].
Asslander, Jakob ;
Gultekin, Cem ;
Flassbeck, Sebastian ;
Glaser, Steffen J. ;
Sodickson, Daniel K. .
MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (04) :2003-2017
[5]   A Perspective on MR Fingerprinting [J].
Asslander, Jakob .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (03) :676-685
[6]   Hybrid-state free precession in nuclear magnetic resonance [J].
Asslander, Jakob ;
Novikov, Dmitry S. ;
Lattanzi, Riccardo ;
Sodickson, Daniel K. ;
Cloos, Martijn A. .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[7]   Optimized quantification of spin relaxation times in the hybrid state [J].
Asslander, Jakob ;
Lattanzi, Riccardo ;
Sodickson, Daniel K. ;
Cloos, Martijn A. .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (04) :1385-1397
[8]   Low rank alternating direction method of multipliers reconstruction for MR fingerprinting [J].
Asslander, Jakob ;
Cloos, Martijn A. ;
Knoll, Florian ;
Sodickson, Daniel K. ;
Hennig, Juergen ;
Lattanzi, Riccardo .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (01) :83-96
[9]   Rapid compressed sensing reconstruction of 3D non-Cartesian MRI [J].
Baron, Corey A. ;
Dwork, Nicholas ;
Pauly, John M. ;
Nishimura, Dwight G. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (05) :2685-2692
[10]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202