Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups

被引:0
作者
Redhu, Navneet [1 ]
Gumber, Anupam [2 ]
Shukla, Niraj K. [1 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Khandwa Rd, Indore 453552, India
[2] Univ Genoa, MaLGa Ctr, Dept Math, Via Dodecaneso 35, I-16146 Genoa, Italy
基金
奥地利科学基金会;
关键词
Locally compact abelian groups; Parseval frames; Pairwise orthogonal frames; Generalized translation invariant systems; Local integrablity condition; Wavelets and B-splines; SHIFT-INVARIANT SYSTEMS; WAVELET FRAMES; RIESZ BASES; TIGHT; RECONSTRUCTION;
D O I
10.1016/j.acha.2024.101708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in L-2(G) satisfying the local integrability condition (LIC) and having the Calder & oacute;n sum one, where G is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing N numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in L-2(R) and L-2(G), using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.
引用
收藏
页数:27
相关论文
共 66 条
[1]   Sampling in de Branges Spaces and Naimark Dilation [J].
al-Sa'di, Sa'ud ;
Weber, Eric S. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (03) :583-601
[2]   Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces [J].
Aldroubi, A .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (02) :151-161
[3]   CONTINUOUS FRAMES IN HILBERT-SPACE [J].
ALI, ST ;
ANTOINE, JP ;
GAZEAU, JP .
ANNALS OF PHYSICS, 1993, 222 (01) :1-37
[4]   Multiplexing of signals using superframes [J].
Balan, R .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 :118-129
[5]   The analysis and design of windowed Fourier frame based multiple description source coding schemes [J].
Balan, R ;
Daubechies, I ;
Vaishampayan, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2491-2536
[6]  
Balan R., 1999, CONT MATH, V247, P29, DOI DOI 10.1090/conm/247/03796
[7]  
Balan R., 1998, PhD thesis
[8]   Calderon-type inequalities for affine frames [J].
Barbieri, Davide ;
Hernandez, Eugenio ;
Mayeli, Azita .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 50 :326-352
[9]   The Zak transform and the structure of spaces invariant by the action of an LCA group [J].
Barbieri, Davide ;
Hernandez, Eugenio ;
Paternostro, Victoria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) :1327-1358
[10]   GENERALIZED SHIFT-INVARIANT SYSTEMS AND APPROXIMATELY DUAL FRAMES [J].
Benavente, Ana ;
Christensen, Ole ;
Zakowicz, Maria I. .
ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (02) :177-189