Deform-Mamba Network for MRI Super-Resolution

被引:0
|
作者
Ji, Zexin [1 ,2 ,4 ]
Zou, Beiji [1 ,2 ]
Kui, Xiaoyan [1 ,2 ]
Vera, Pierre [4 ]
Ruan, Su [3 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Hunan Engn Res Ctr Machine Vis & Intelligent Med, Changsha 410083, Peoples R China
[3] Univ Rouen Normandy, LITIS, QuantIF UR 4108, F-76000 Rouen, France
[4] Henri Becquerel Canc Ctr, Dept Nucl Med, Rouen, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII | 2024年 / 15007卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Magnetic Resonance Imaging; Super-Resolution; Mamba; Deformable; IMAGE; TRANSFORMER; RESOLUTION;
D O I
10.1007/978-3-031-72104-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new architecture, called Deform-Mamba, for MR image super-resolution. Unlike conventional CNN or Transformer-based super-resolution approaches which encounter challenges related to the local respective field or heavy computational cost, our approach aims to effectively explore the local and global information of images. Specifically, we develop a Deform-Mamba encoder which is composed of two branches, modulated deform block and vision Mamba block. We also design a multi-view context module in the bottleneck layer to explore the multi-view contextual content. Thanks to the extracted features of the encoder, which include content-adaptive local and efficient global information, the vision Mamba decoder finally generates high-quality MR images. Moreover, we introduce a contrastive edge loss to promote the reconstruction of edge and contrast related content. Quantitative and qualitative experimental results indicate that our approach on IXI and fastMRI datasets achieves competitive performance.
引用
收藏
页码:242 / 252
页数:11
相关论文
共 50 条
  • [41] Capsule GAN for prostate MRI super-resolution
    Majdabadi, Mahdiyar Molahasani
    Choi, Younhee
    Deivalakshmi, S.
    Ko, Seokbum
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (03) : 4119 - 4141
  • [42] Capsule GAN for prostate MRI super-resolution
    Mahdiyar Molahasani Majdabadi
    Younhee Choi
    S. Deivalakshmi
    Seokbum Ko
    Multimedia Tools and Applications, 2022, 81 : 4119 - 4141
  • [43] Adaptive Feature Consolidation Network for Burst Super-Resolution
    Mehta, Nancy
    Dudhane, Akshay
    Murala, Subrahmanyam
    Zamir, Syed Waqas
    Khan, Salman
    Khan, Fahad Shahbaz
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1278 - 1285
  • [44] A modular neural network for super-resolution of human faces
    Carcenac, Manuel
    APPLIED INTELLIGENCE, 2009, 30 (02) : 168 - 186
  • [45] Iterative Network for Image Super-Resolution
    Liu, Yuqing
    Wang, Shiqi
    Zhang, Jian
    Wang, Shanshe
    Ma, Siwei
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2259 - 2272
  • [46] Attention hierarchical network for super-resolution
    Zhaoyang Song
    Xiaoqiang Zhao
    Yongyong Hui
    Hongmei Jiang
    Multimedia Tools and Applications, 2023, 82 : 46351 - 46369
  • [47] A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction
    Xiao, Yueyue
    Chen, Chunxiao
    Wang, Liang
    Yu, Jie
    Fu, Xue
    Zou, Yuan
    Lin, Zhe
    Wang, Kunpeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (13)
  • [48] Attention hierarchical network for super-resolution
    Song, Zhaoyang
    Zhao, Xiaoqiang
    Hui, Yongyong
    Jiang, Hongmei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46351 - 46369
  • [49] MAPANet: A Multi-Scale Attention-Guided Progressive Aggregation Network for Multi-Contrast MRI Super-Resolution
    Liu, Licheng
    Liu, Tao
    Zhou, Wei
    Wang, Yaonan
    Liu, Min
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 928 - 940
  • [50] Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images
    Du, Weizhi
    Tian, Shihao
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (01): : 197 - 206