Deform-Mamba Network for MRI Super-Resolution

被引:0
|
作者
Ji, Zexin [1 ,2 ,4 ]
Zou, Beiji [1 ,2 ]
Kui, Xiaoyan [1 ,2 ]
Vera, Pierre [4 ]
Ruan, Su [3 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Hunan Engn Res Ctr Machine Vis & Intelligent Med, Changsha 410083, Peoples R China
[3] Univ Rouen Normandy, LITIS, QuantIF UR 4108, F-76000 Rouen, France
[4] Henri Becquerel Canc Ctr, Dept Nucl Med, Rouen, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII | 2024年 / 15007卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Magnetic Resonance Imaging; Super-Resolution; Mamba; Deformable; IMAGE; TRANSFORMER; RESOLUTION;
D O I
10.1007/978-3-031-72104-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new architecture, called Deform-Mamba, for MR image super-resolution. Unlike conventional CNN or Transformer-based super-resolution approaches which encounter challenges related to the local respective field or heavy computational cost, our approach aims to effectively explore the local and global information of images. Specifically, we develop a Deform-Mamba encoder which is composed of two branches, modulated deform block and vision Mamba block. We also design a multi-view context module in the bottleneck layer to explore the multi-view contextual content. Thanks to the extracted features of the encoder, which include content-adaptive local and efficient global information, the vision Mamba decoder finally generates high-quality MR images. Moreover, we introduce a contrastive edge loss to promote the reconstruction of edge and contrast related content. Quantitative and qualitative experimental results indicate that our approach on IXI and fastMRI datasets achieves competitive performance.
引用
收藏
页码:242 / 252
页数:11
相关论文
共 50 条
  • [31] Penrose Pixels for Super-Resolution
    Ben-Ezra, Moshe
    Lin, Zhouchen
    Wilburn, Bennett
    Zhang, Wei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (07) : 1370 - 1383
  • [32] Multi-contrast MRI Super-Resolution via a Multi-stage Integration Network
    Feng, Chun-Mei
    Fu, Huazhu
    Yuan, Shuhao
    Xu, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VI, 2021, 12906 : 140 - 149
  • [33] Super-Resolution MRI Using Microscopic Spatial Modulation of Magnetization
    Ropele, Stefan
    Ebner, Franz
    Fazekas, Franz
    Reishofer, Gernot
    MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (06) : 1671 - 1675
  • [34] Sparse Dictionary Representation and Propagation for MRI Volume Super-Resolution
    Han, Xian-Hua
    Chen, Yen-Wei
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [35] Image Restoration Techniques in Super-Resolution Reconstruction of MRI images
    Alsayem, Hisham A.
    Kadah, Yasser M.
    2016 33RD NATIONAL RADIO SCIENCE CONFERENCE (NRSC), 2016, : 188 - 194
  • [36] Sparse representation-based MRI super-resolution reconstruction
    Wang, Yun-Heng
    Qiao, Jiaqing
    Li, Jun-Bao
    Fu, Ping
    Chu, Shu-Chuan
    Roddick, John F.
    MEASUREMENT, 2014, 47 : 946 - 953
  • [37] Brain MRI super-resolution using coupled-projection residual network
    Feng, Chun-Mei
    Wang, Kai
    Lu, Shijian
    Xu, Yong
    Li, Xuelong
    NEUROCOMPUTING, 2021, 456 : 190 - 199
  • [38] Free super-resolution MRI by BRICKD slices
    Miloushev, Vesselin Z.
    Deh, Kofi
    Keshari, Kayvan R.
    JOURNAL OF MAGNETIC RESONANCE, 2022, 341
  • [39] MRI super-resolution via realistic downsampling with adversarial learning
    Huang, Bangyan
    Xiao, Haonan
    Liu, Weiwei
    Zhang, Yibao
    Wu, Hao
    Wang, Weihu
    Yang, Yunhuan
    Yang, Yidong
    Miller, G. Wilson
    Li, Tian
    Cai, Jing
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (20)
  • [40] MRI Super-Resolution with Two Regularization Parameters
    Ni Hao
    Ruan Ruolin
    Liu Fanghua
    Wu Aixia
    2016 3RD INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2016, : 901 - 905