Crystal structures of NAD(P)H nitroreductases from Klebsiella pneumoniae

被引:0
作者
Kancherla, Abhishek D. [1 ,2 ]
Liu, Lijun [1 ,3 ]
Tillery, Logan [1 ,2 ]
Shek, Roger [1 ,2 ]
Craig, Justin K. [1 ,2 ]
Machen, Alexandra J. [1 ,3 ]
Seibold, Steve [1 ,3 ]
Battaile, Kevin P. [4 ]
Fradi, Selma [1 ,2 ]
Barrett, Lynn K. [1 ,2 ]
Subramanian, Sandhya [1 ,5 ]
Myler, Peter [1 ,5 ]
Van Voorhis, Wesley C. [1 ,2 ]
Lovell, Scott [1 ,3 ]
机构
[1] Seattle Struct Genom Ctr Infect Dis SSGCID, Seattle, WA 98109 USA
[2] Univ Washington, Dept Med, Div Allergy & Infect Dis, Ctr Emerging & Reemerging Infect Dis, Seattle, WA 98195 USA
[3] Univ Kansas, Prot Struct & Xray Crystallog Lab, 2034 Becker Dr, Lawrence, KS 66047 USA
[4] New York Struct Biol Ctr, NYX, Upton, NY 10027 USA
[5] Seattle Childrens Res Inst, Ctr Global Infect Dis Res, 307 Westlake Ave North,Suite 500, Seattle, WA 98109 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS | 2024年 / 80卷
基金
美国国家卫生研究院;
关键词
nitroreductases; Klebsiella pneumoniae; SSGCID; structural genomics; Seattle Structural Genomics Center for Infectious Disease; oxidoreductases; ESCHERICHIA-COLI; SEQUENCE; BINDING; RESISTANCE; REDUCTION; STATES; YDJA;
D O I
10.1107/S2053230X24006472
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Klebsiella pneumoniae (Kp) is an infectious disease pathogen that poses a significant global health threat due to its potential to cause severe infections and its tendency to exhibit multidrug resistance. Understanding the enzymatic mechanisms of the oxygen-insensitive nitroreductases (Kp-NRs) from Kp is crucial for the development of effective nitrofuran drugs, such as nitrofurantoin, that can be activated as antibiotics. In this paper, three crystal structures of two Kp-NRs (PDB entries 7tmf/7tmg and 8dor) are presented, and an analysis of their crystal structures and their flavin mononucleotide (FMN)-binding mode is provided. The structures with PDB codes 7tmf (Kp-NR1a), 7tmg (Kp-NR1b) and 8dor (Kp-NR2) were determined at resolutions of 1.97, 1.90 and 1.35 angstrom, respectively. The Kp-NR1a and Kp-NR1b structures adopt an.. fold, in which four-stranded antiparallel.-sheets are surrounded by five helices. With domain swapping, the beta-sheet was expanded with alpha beta-strand from the other molecule of the dimer. The difference between the structures lies in the loop spanning Leu173-Ala185: in Kp-NR1a the loop is disordered, whereas the loop adopts multiple conformations in Kp-NR1b. The FMN interactions within Kp-NR1/ NR2 involve hydrogen-bond and pi-stacking interactions. Kp-NR2 contains four-stranded antiparallel.-sheets surrounded by eight helices with two short helices and one beta-sheet. Structural and sequence alignments show that Kp-NR1a/b and Kp-NR2 are homologs of the Escherichia coli oxygen-insensitive NRs YdjA and NfnB and of Enterobacter cloacae NR, respectively. By homology inference from E. coli, Kp-NR1a/b and Kp-NR2 may detoxify polynitroaromatic compounds and Kp-NR2 may activate nitrofuran drugs to cause bactericidal activity through a ping-pong bi-bi mechanism, respectively.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 37 条
  • [1] The CCP4 suite: integrative software for macromolecular crystallography
    Agirre, Jon
    Atanasova, Mihaela
    Bagdonas, Haroldas
    Ballard, Charles B.
    Basle, Arnaud
    Beilsten-Edmands, James
    Borges, Rafael J.
    Brown, David G.
    Burgos-Marmol, J. Javier
    Berrisford, John M.
    Bond, Paul S.
    Caballero, Iracema
    Catapano, Lucrezia
    Chojnowski, Grzegorz
    Cook, Atlanta G.
    Cowtan, Kevin D.
    Croll, Tristan I.
    Debreczeni, Judit E.
    Devenish, Nicholas E.
    Dodson, Eleanor J.
    Drevon, Tarik R.
    Emsley, Paul
    Evans, Gwyndaf
    Evans, Phil R.
    Fando, Maria
    Foadi, James
    Fuentes-Montero, Luis
    Garman, Elspeth F.
    Gerstel, Markus
    Gildea, Richard J.
    Hatti, Kaushik
    Hekkelman, Maarten L.
    Heuser, Philipp
    Hoh, Soon Wen
    Hough, Michael A.
    Jenkins, Huw T.
    Jimenez, Elisabet
    Joosten, Robbie P.
    Keegan, Ronan M.
    Keep, Nicholas
    Krissinel, Eugene B.
    Kolenko, Petr
    Kovalevskiy, Oleg
    Lamzin, Victor S.
    Lawson, David M.
    Lebedev, Andrey A.
    Leslie, Andrew G. W.
    Lohkamp, Bernhard
    Long, Fei
    Maly, Martin
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2023, 79 : 449 - 461
  • [2] Bennett JE, 2019, Mandell, Douglas, and Bennett's principles and practice of infectious diseases, V9th
  • [3] BRYANT C, 1991, J BIOL CHEM, V266, P4119
  • [4] MolProbity: all-atom structure validation for macromolecular crystallography
    Chen, Vincent B.
    Arendall, W. Bryan, III
    Headd, Jeffrey J.
    Keedy, Daniel A.
    Immormino, Robert M.
    Kapral, Gary J.
    Murray, Laura W.
    Richardson, Jane S.
    Richardson, David C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 12 - 21
  • [5] Crystal structure of a minimal nitroreductase, ydjA, from Escherichia coli K12 with and without FMN cofactor
    Choi, Ji-Woo
    Lee, Jieun
    Nishi, Kosuke
    Kim, Yong-Sung
    Jung, Che-Hun
    Kim, Jeong-Sun
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2008, 377 (01) : 258 - 267
  • [6] Reduction of polynitroaromatic compounds: the bacterial nitroreductases
    Dolores Roldan, Maria
    Perez-Reinado, Eva
    Castillo, Francisco
    Moreno-Vivian, Conrado
    [J]. FEMS MICROBIOLOGY REVIEWS, 2008, 32 (03) : 474 - 500
  • [7] Features and development of Coot
    Emsley, P.
    Lohkamp, B.
    Scott, W. G.
    Cowtan, K.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 : 486 - 501
  • [8] An introduction to data reduction: space-group determination, scaling and intensity statistics
    Evans, Philip R.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 : 282 - 292
  • [9] Structures of nitroreductase in three states - Effects of inhibitor binding and reduction
    Haynes, CA
    Koder, RL
    Miller, AF
    Rodgers, DW
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (13) : 11513 - 11520
  • [10] Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019
    Ikuta, Kevin S.
    Swetschinski, Lucien R.
    Aguilar, Gisela Robles
    Sharara, Fablina
    Mestrovic, Tomislav
    Gray, Authia P.
    Weaver, Nicole Davis
    Wool, Eve E.
    Han, Chieh
    Hayoon, Anna Gershberg
    Aali, Amirali
    Abate, Semagn Mekonnen
    Abbasi-Kangevari, Mohsen
    Abbasi-Kangevari, Zeinab
    Abd-Elsalam, Sherief
    Abebe, Getachew
    Abedi, Aidin
    Abhari, Amir Parsa
    Abidi, Hassan
    Aboagye, Richard Gyan
    Absalan, Abdorrahim
    Ali, Hiwa Abubaker
    Acuna, Juan Manuel
    Adane, Tigist Demssew
    Addo, Isaac Yeboah
    Adegboye, Oyelola A.
    Adnan, Mohammad
    Adnani, Qorinah Estiningtyas Sakilah
    Afzal, Muhammad Sohail
    Afzal, Saira
    Aghdam, Zahra Babaei
    Ahinkorah, Bright Opoku
    Ahmad, Aqeel
    Ahmad, Araz Ramazan
    Ahmad, Rizwan
    Ahmad, Sajjad
    Ahmad, Sohail
    Ahmadi, Sepideh
    Ahmed, Ali
    Ahmed, Haroon
    Ahmed, Jivan Qasim
    Rashid, Tarik Ahmed
    Ajami, Marjan
    Aji, Budi
    Akbarzadeh-Khiavi, Mostafa
    Akunna, Chisom Joyqueenet
    Al Hamad, Hanadi
    Alahdab, Fares
    Al-Aly, Ziyad
    Aldeyab, Mamoon A.
    [J]. LANCET, 2022, 400 (10369) : 2221 - 2248