Scaling limit of random plane quadrangulations with a simple boundary, via restriction

被引:0
作者
Bettinelli, Jeremie [1 ]
Curien, Nicolas [2 ,3 ]
Fredes, Luis [4 ]
Sepulveda, Avelio [5 ]
机构
[1] Inst Polytech Paris, CNRS, Ecole Polytech, LIX, Palaiseau, France
[2] Univ Paris Saclay, Orsay, France
[3] Inst Univ France, Orsay, France
[4] Univ Bordeaux, CNRS, Bordeaux INP, IMB, Talence, France
[5] Univ Chile, Ctr Modelamiento Matemat, UMI CNRS 2807, AFB170001,Beauchef 851, Santiago, Chile
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2025年 / 61卷 / 01期
基金
欧洲研究理事会;
关键词
Plane maps; Brownian disk; Quadrangulation; Scaling limit; Simple boundary; CONVERGENCE; MAPS; WALK;
D O I
10.1214/23-AIHP1437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence / (pn) of even positive integers with pn similar to 2 alpha 2n for some alpha is an element of (0, infinity). Then, for the Gromov-Hausdorff topology, a quadrangulation with a simple boundary uniformly sampled among those with n inner faces and boundary length pn weakly converges, in the usual scaling n-1/4, toward the Brownian disk of perimeter 3 alpha. Our method consists in seeing a uniform quadrangulation with a simple boundary as a conditioned version of a model of maps for which the Gromov-Hausdorff scaling limit is known. We then explain how classical techniques of unconditionning can be used in this setting of random maps.
引用
收藏
页码:213 / 231
页数:19
相关论文
共 33 条
[21]   Uniform infinite planar quadrangulations with a boundary [J].
Curien, Nicolas ;
Miermont, Gregory .
RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (01) :30-58
[22]   WEAK CONVERGENCE TO BROWNIAN MEANDER AND BROWNIAN EXCURSION [J].
DURRETT, RT ;
IGLEHART, DL ;
MILLER, DR .
ANNALS OF PROBABILITY, 1977, 5 (01) :117-129
[23]  
Fredes L, 2020, ELECTRON J COMB, V27
[24]   CONVERGENCE OF THE SELF-AVOIDING WALK ON RANDOM QUADRANGULATIONS TO SLE8/3 ON √8/3-LIOUVILLE QUANTUM GRAVITY [J].
Gwynne, Ewain ;
Miller, Jason .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2021, 54 (02) :305-405
[25]   EXTERNAL DIFFUSION-LIMITED AGGREGATION ON A SPANNING-TREE-WEIGHTED RANDOM PLANAR MAP [J].
Gwynne, Ewain ;
Pfeffer, Joshua .
ANNALS OF PROBABILITY, 2021, 49 (04) :1633-1676
[26]   Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk [J].
Gwynne, Ewain ;
Miller, Jason .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (01) :551-589
[27]   INVARIANCE PRINCIPLE FOR RANDOM-WALK CONDITIONED BY A LATER RETURN TO ZERO [J].
KAIGH, WD .
ANNALS OF PROBABILITY, 1976, 4 (01) :115-121
[28]   A Simple Proof of Duquesne's Theorem on Contour Processes of Conditioned Galton-Watson Trees [J].
Kortchemski, Igor .
SEMINAIRE DE PROBABILITES XLV, 2013, 2078 :537-558
[29]  
Le Gall J.-F., 2022, Ann. Inst. Henri Poincare Probab. Stat., V58, P1091, DOI [10.1214/21-aihp1179, DOI 10.1214/21-AIHP1179]
[30]   UNIQUENESS AND UNIVERSALITY OF THE BROWNIAN MAP [J].
Le Gall, Jean-Francois .
ANNALS OF PROBABILITY, 2013, 41 (04) :2880-2960