Scaling limit of random plane quadrangulations with a simple boundary, via restriction

被引:0
作者
Bettinelli, Jeremie [1 ]
Curien, Nicolas [2 ,3 ]
Fredes, Luis [4 ]
Sepulveda, Avelio [5 ]
机构
[1] Inst Polytech Paris, CNRS, Ecole Polytech, LIX, Palaiseau, France
[2] Univ Paris Saclay, Orsay, France
[3] Inst Univ France, Orsay, France
[4] Univ Bordeaux, CNRS, Bordeaux INP, IMB, Talence, France
[5] Univ Chile, Ctr Modelamiento Matemat, UMI CNRS 2807, AFB170001,Beauchef 851, Santiago, Chile
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2025年 / 61卷 / 01期
基金
欧洲研究理事会;
关键词
Plane maps; Brownian disk; Quadrangulation; Scaling limit; Simple boundary; CONVERGENCE; MAPS; WALK;
D O I
10.1214/23-AIHP1437
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence / (pn) of even positive integers with pn similar to 2 alpha 2n for some alpha is an element of (0, infinity). Then, for the Gromov-Hausdorff topology, a quadrangulation with a simple boundary uniformly sampled among those with n inner faces and boundary length pn weakly converges, in the usual scaling n-1/4, toward the Brownian disk of perimeter 3 alpha. Our method consists in seeing a uniform quadrangulation with a simple boundary as a conditioned version of a model of maps for which the Gromov-Hausdorff scaling limit is known. We then explain how classical techniques of unconditionning can be used in this setting of random maps.
引用
收藏
页码:213 / 231
页数:19
相关论文
共 33 条
  • [1] Rescaled bipartite planar maps converge to the Brownian map
    Abraham, Celine
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 575 - 595
  • [2] Joint convergence of random quadrangulations and their cores
    Addario-Berry, Louigi
    Wen, Yuting
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1890 - 1920
  • [3] THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS AND RANDOM SIMPLE QUADRANGULATIONS
    Addario-Berry, Louigi
    Albenque, Marie
    [J]. ANNALS OF PROBABILITY, 2017, 45 (05) : 2767 - 2825
  • [4] Scaling limit of triangulations of polygons
    Albenque, Marie
    Holden, Nina
    Sun, Xin
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 43
  • [5] Random maps, coalescing saddles, singularity analysis, and airy phenomena
    Banderier, C
    Flajolet, P
    Schaeffer, G
    Soria, M
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (3-4) : 194 - 246
  • [6] Quadrangulations with no pendant vertices
    Beltran, Johel
    Le Gall, Jean-Francois
    [J]. BERNOULLI, 2013, 19 (04) : 1150 - 1175
  • [7] Bettinelli J, 2022, Arxiv, DOI arXiv:2212.12511
  • [8] Compact Brownian surfaces I: Brownian disks
    Bettinelli, Jeremie
    Miermont, Gregory
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (3-4) : 555 - 614
  • [9] Scaling limit of random planar quadrangulations with a boundary
    Bettinelli, Jeremie
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 432 - 477
  • [10] The scaling limit of uniform random plane maps, via the Ambjorn-Budd bijection
    Bettinelli, Jeremie
    Jacob, Emmanuel
    Miermont, Gregory
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19