Thermal runaway and flame propagation of lithium-ion battery in confined spaces: Experiments and simulations

被引:0
|
作者
Xu, Yingying [1 ,2 ]
Lu, Jiajun [3 ]
Zhang, Pengwei [4 ]
Gao, Kejie [5 ]
Huang, Yuqi [1 ,6 ]
机构
[1] Zhejiang Univ, Inst Power Machinery & Vehicular Engn, Coll Energy Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Polytech Inst, Hangzhou 310015, Peoples R China
[3] Huzhou Inst Ind Control Technol, Huzhou 313000, Peoples R China
[4] Yantai Jereh Petr Equipment & Technol Co Ltd, Yantai 264000, Peoples R China
[5] Zhejiang Leapenergy Technol Co Ltd, Hangzhou 310051, Peoples R China
[6] Zhejiang Univ, Qingshanhu Energy Res Ctr, Hangzhou 310027, Peoples R China
关键词
Lithium-ion battery; Confined space; FDS simulation; Thermal runaway flame; Thermal runaway propagation; BEHAVIOR; SAFETY; MODEL; HEAT;
D O I
10.1016/j.est.2025.116154
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal safety of lithium-ion batteries (LIBs) in confined spaces remains a critical challenge in power battery pack design. This study conducts a multidimensional evaluation into the effects of spatial scales on thermal runaway (TR) characteristics through integrated experimental and simulation approaches. Key findings reveal that reducing spatial volume from 8.0 x 108 mm3 to 2.88 x 105 mm3 significantly advances the TR trigger time of single cells by 973 s (from 1490s to 517 s), attributed to accelerated heat accumulation under degraded thermal dissipation. Furthermore, the TR propagation interval between adjacent batteries shortens by 64 s, revealing that spatial compression accelerates the chain reaction of TR through enhanced heat transfer. The simulation based on the Fire Dynamics Simulator (FDS) demonstrated the flame development dynamics in a confined environment, with a heat release rate simulation error within 4 %. Notably, vertical height reduction proves pivotal in flame suppression-spaces below 80 mm reduce heat flux to adjacent batteries by 52.3 % compared to 800 mm. These findings establish key spatial scale threshold parameters for thermal safety strategies in transportation and storage scenarios. And the innovative application of FDS provides advanced engineering solutions for battery pack design and TR fire prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Versatile multiphysics model for thermal runaway estimation of a lithium-ion battery
    Kim, Jun-Hyeong
    Kwak, Eunji
    Jeong, Jinho
    Oh, Ki-Yong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 16550 - 16575
  • [32] Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change
    Tang, W.
    Xu, X. M.
    Li, R. Z.
    Jin, H. F.
    Cao, L. D.
    Wang, H. M.
    IONICS, 2020, 26 (12) : 6133 - 6143
  • [33] Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse
    Wang H.-B.
    Li Y.
    Wang Q.-Z.
    Du Z.-M.
    Feng X.-N.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (05): : 663 - 675
  • [34] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [35] Uncertainty assessment method for thermal runaway propagation of lithium-ion battery pack
    Zhang, Wencan
    Yuan, Jiangfeng
    Huang, Jianfeng
    Xie, Yi
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [36] Study on Thermal Runaway Propagation Characteristics and Cooling Inhibition Mechanism of Lithium-Ion Batteries
    Zheng, Yi
    Chen, Shuo
    Peng, Shengtao
    Feng, Xi
    Wang, Chun
    Zhang, Guangwen
    Zhao, Xiangdi
    FIRE TECHNOLOGY, 2025,
  • [37] The influence of tab overheating on thermal runaway propagation of pouch-type lithium-ion battery module with different tab connections
    Lyu, Peizhao
    Liu, Xinjian
    Liu, Chenzhen
    Rao, Zhonghao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 211
  • [38] Experimental Analysis of Thermal Runaway Propagation Risk within 18650 Lithium-Ion Battery Modules
    Zhong, Guobin
    Li, Huang
    Wang, Chao
    Xu, Kaiqi
    Wang, Qingsong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1925 - A1934
  • [39] Influence of Aerogel Felt with Different Thickness on Thermal Runaway Propagation of 18650 Lithium-ion Battery
    Liu, Quanyi
    Zhu, Qian
    Zhu, Wentian
    Yi, Xiaoying
    ELECTROCHEMISTRY, 2022, 90 (08)
  • [40] Simulation of lithium-ion battery thermal runaway considering active material volume fraction effect
    Ding, Yan
    Lu, Li
    Zhang, Huangwei
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 206