3D bioprinting: Advancing the future of food production layer by layer

被引:0
作者
Chandimali, Nisansala [1 ,2 ]
Bak, Seon-Gyeong [1 ]
Park, Eun Hyun [1 ,3 ,4 ]
Cheong, Sun Hee [5 ]
Park, Sang-Ik [1 ,3 ,4 ]
Lee, Seung-Jae [1 ,2 ]
机构
[1] Korea Res Inst Biosci & Biotechnol, Funct Biomat Res Ctr, Jeongeup 56212, South Korea
[2] Univ Sci & Technol UST, Dept Appl Biotechnol, Daejeon 34113, South Korea
[3] Chonnam Natl Univ, Coll Vet Med, Dept Vet Surg, Gwangju 61186, South Korea
[4] Chonnam Natl Univ, BK21 FOUR Program, Gwangju 61186, South Korea
[5] Chonnam Natl Univ, Dept Marine Bio Food Sci, Yeosu 59626, South Korea
基金
新加坡国家研究基金会;
关键词
Bioprinter; Bio ink; Cultured meat; Scaffolds; Tissue engineering; SCAFFOLDS; BIOMATERIALS; HYDROGELS; DESIGN; MEAT;
D O I
10.1016/j.foodchem.2025.142828
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood. In light of the growing global issues associated with food sustainability and the ethical challenges raised by conventional animal agriculture, 3D bioprinting is emerging as a key technology that will transform food production in the years to come. This paper also addresses in detail each of the components that make up bioprinting systems, such as the bioinks and scaffolds used, the various types of bioprinter models, and the software systems that control the production process. It offers a thorough examination of the processes involved in printing diverse food items using bioprinting. Beyond the scope of this conversation, 3D bioprinting, which provides superior precision and scalability in tissue engineering, is a crucial node in the broader system of cultured meat and seafood production. But like any emerging technology, 3D bioprinting has its limitations. In light of this, this study emphasizes the necessity of ongoing research and development to advance bioprinting towards widespread use and, ultimately, promote a more resilient, ethical, and sustainable food supply system.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering
    Chen, Annan
    Wang, Wanying
    Mao, Zhengyi
    He, Yunhu
    Chen, Shiting
    Liu, Guo
    Su, Jin
    Feng, Pei
    Shi, Yusheng
    Yan, Chunze
    Lu, Jian
    ADVANCED MATERIALS, 2024, 36 (34)
  • [32] 3D bioprinting for fabricating artificial skin tissue
    Gao, Chuang
    Lu, Chunxiang
    Jian, Zhian
    Zhang, Tingrui
    Chen, Zhongjian
    Zhu, Quangang
    Tai, Zongguang
    Liu, Yuanyuan
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2021, 208
  • [33] 3D Bioprinting Technology and Hydrogels Used in the Process
    Lima, Tainara de P. L.
    Canelas, Caio Augusto d. A.
    Concha, Viktor O. C.
    Costa, Fernando A. M. da
    Passos, Marcele F.
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2022, 13 (04)
  • [34] 3D bioprinting for cell culture and tissue fabrication
    Jian, Honglei
    Wang, Meiyue
    Wang, Shengtao
    Wang, Anhe
    Bai, Shuo
    BIO-DESIGN AND MANUFACTURING, 2018, 1 (01) : 45 - 61
  • [35] Current Progress in 3D Bioprinting of Tissue Analogs
    Zhang, Shiqing
    Wang, Haibin
    SLAS TECHNOLOGY, 2019, 24 (01): : 70 - 78
  • [36] 3D bioprinting and the current applications in tissue engineering
    Huang, Ying
    Zhang, Xiao-Fei
    Gao, Guifang
    Yonezawa, Tomo
    Cui, Xiaofeng
    BIOTECHNOLOGY JOURNAL, 2017, 12 (08)
  • [37] Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models
    Antill-O'Brien, Natasha
    Bourke, Justin
    O'Connell, Cathal D.
    MATERIALS, 2019, 12 (19)
  • [38] Emerging 3D bioprinting applications in plastic surgery
    Yang, Pu
    Ju, Yikun
    Hu, Yue
    Xie, Xiaoyan
    Fang, Bairong
    Lei, Lanjie
    BIOMATERIALS RESEARCH, 2023, 27 (01)
  • [39] Diffusion-Based 3D Bioprinting Strategies
    Cai, Betty
    Kilian, David
    Mejia, Daniel Ramos
    Rios, Ricardo J.
    Ali, Ashal
    Heilshorn, Sarah C.
    ADVANCED SCIENCE, 2024, 11 (08)
  • [40] Progress in 3D Bioprinting Technology for Osteochondral Regeneration
    Lafuente-Merchan, Markel
    Ruiz-Alonso, Sandra
    Garcia-Villen, Fatima
    Gallego, Idoia
    Galvez-Martin, Patricia
    Saenz-del-Burgo, Laura
    Pedraz, Jose Luis
    PHARMACEUTICS, 2022, 14 (08)