Ionic covalent organic frameworks-based electrolyte enables fast Na-ion diffusion towards quasi-solid-state sodium batteries

被引:0
作者
Kang, Tianxing [1 ]
Liu, Haoyuan [2 ]
Cai, Jian [2 ]
Feng, Xingyi [1 ]
Tong, Zhongqiu [3 ]
Zou, Hanbo [1 ]
Yang, Wei [1 ]
Nan, Junmin [2 ]
Chen, Shengzhou [1 ]
机构
[1] Guangzhou Univ, Inst Energy & Catalysis, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Chem, Guangzhou 510700, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming, Peoples R China
基金
中国博士后科学基金;
关键词
Covalent organic frameworks; Quasi-solid-state electrolyte; Fast Na-ion diffusion; Sodium metal batteries; LI;
D O I
10.1016/j.ensm.2025.104192
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state sodium batteries present a high potential for future energy technology due to their high safety and energy density. However, sluggish Na+ transportation of solid-state electrolytes and serious Na dendrites hinder their further development. Herein, we propose a negatively charged-modified covalent organic framework (COF) with -SO3Na as a Na-ion quasi-solid-state electrolyte (QSSE-COF-SO3Na) for the first time to enhance the Na+ transportation. Density functional theory calculations and molecular dynamics simulations prove that the nanoscale ion channels of the COF-SO3Na and the interaction between the -SO3- and the anion PF6- effectively enhance the Na+ diffusion kinetics. The QSSE-COF-SO3Na exhibits a high ionic conductivity of 4.1 x 10-4 S cm-1 at room temperature and a high transference number of 0.89. Particularly, Na|QSSE-COF-SO3Na|Na symmetric cells show a stable Na plating/stripping process without Na dendrites over 1000 h and 800 h at 0.05 and 0.2 mA cm-2, respectively. Additionally, the QSSE-COF-SO3Na supports full cells, which respectively use NaTi2(PO4)3, Na3V2(PO4)3, and NaFePO4 as cathodes, to display good cycling stability and rate performance. This work highlights the novel strategy to develop the Na-ion quasi-solid-state devices.
引用
收藏
页数:8
相关论文
共 52 条
  • [1] Zhao Y., Kang Y., Wozny J., Lu J., Du H., Li C., Li T., Kang F., Tavajohi N., Li B., Recycling of sodium-ion batteries, Nat. Rev. Mater., 8, pp. 623-634, (2023)
  • [2] Hirsh H.S., Li Y., Tan D.H.S., Zhang M., Zhao E., Meng Y.S., Sodium-ion batteries paving the way for grid energy storage, Adv. Energy Mater., 10, (2020)
  • [3] Wang H., Matios E., Luo J., Li W., Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries, Chem. Soc. Rev., 49, pp. 3783-3805, (2020)
  • [4] Sun B., Xiong P., Maitra U., Langsdorf D., Yan K., Wang C., Janek J., Schroder D., Wang G., Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries, Adv. Mater., 32, (2020)
  • [5] Chu C., Li R., Cai F., Bai Z., Wang Y., Xu X., Wang N., Yang J., Dou S., Recent advanced skeletons in sodium metal anodes, Energy Environ. Sci., 14, pp. 4318-4340, (2021)
  • [6] Cui J., Wang A., Li G., Wang D., Shu D., Dong A., Zhu G., Luo J., Sun B., Composite sodium metal anodes for practical applications, J. Mater. Chem. A., 8, pp. 15399-15416, (2020)
  • [7] Zhao C., Liu L., Qi X., Lu Y., Wu F., Zhao J., Yu Y., Hu Y.S., Chen L., Solid-state sodium batteries, Adv. Energy Mater., 8, (2018)
  • [8] Bay M.C., Wang M., Grissa R., Heinz M.V.F., Sakamoto J., Battaglia C., Sodium plating from na-β″-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries, Adv. Energy Mater., 10, (2019)
  • [9] Jaschin P.W., Tang C.R., Wachsman E.D., High-rate cycling in 3d dual-doped nasicon architectures toward room-temperature sodium-metal-anode solid-state batteries, Energy Environ. Sci., 17, pp. 727-737, (2024)
  • [10] Li Y., Li M., Sun Z., Ni Q., Jin H., Zhao Y., Recent advance on nasicon electrolyte in solid-state sodium metal batteries, Energy Storage Mater., 56, pp. 582-599, (2023)