Design and Optimization of Power Harrow Soil Crushing Components for Coastal Saline-Alkali Land

被引:0
|
作者
Xu, Nan [1 ,2 ]
Xin, Zhenbo [1 ,3 ]
Yuan, Jin [1 ,3 ]
Gao, Zenghui [2 ]
Tian, Yu [2 ]
Xia, Chao [2 ]
Liu, Xuemei [1 ,3 ]
Wang, Dongwei [2 ]
机构
[1] Shandong Agr Univ, Coll Mech & Elect Engn, Tai An 271018, Peoples R China
[2] Yellow River Delta Intelligent Agr Machinery & Equ, Dongying 257000, Peoples R China
[3] Shandong Agr Equipment Intelligent Engn Lab, Tai An 271018, Peoples R China
来源
AGRICULTURE-BASEL | 2025年 / 15卷 / 02期
基金
国家重点研发计划;
关键词
saline-alkali soil; power harrow; Discrete Element Method; key components; SIMULATION; PARAMETERS;
D O I
10.3390/agriculture15020206
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In China, there are approximately 36.7 million hectares of available saline-alkali land. The quality of land preparation significantly influences the yield of crops grown in saline-alkali soil. However, saline-alkali soil is highly compacted, and, currently, the market lacks land-preparation products specifically tailored to the unique characteristics of saline-alkali land. The soil crushing performance of existing power harrows fails to meet the requirements for high-quality land preparation, thus affecting crop planting yields. Consequently, it is imperative to conduct research on the design and performance improvement of the soil crushing components of power harrows for saline-alkali land. This paper centers on the key soil crushing component, the harrow blade, and conducts research from the perspectives of kinematics and dynamics. Initially, the ranges of key structural and motion parameters are determined, such as the angle of the harrow blade cutting edge, the thickness of the of the harrow blade cutting edge, and the ratio of the circumferential speed to the forward speed. Subsequently, through simulation tests integrating the Discrete Element Method (DEM) and the Box-Behnken Design (BBD), the optimal parameter combination is identified. The impact of the forward speed and the rotational speed of the vertical-shaft rotor on soil disturbance is analyzed. The relationship between soil disturbance and soil heaping is explored, and an optimal forward speed of around 6 km/h is determined. Field tests are conducted to verify the cause of soil heaping. The test results show that the soil crushing rates are all above 85%, with an average soil crushing rate of 88.66%. These test results have achieved the predetermined objectives and meet the design requirements.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] The Effect of Land Use on Bacterial Communities in Saline-Alkali Soil
    Peng, Mu
    Jia, Hongbai
    Wang, Qiuyu
    CURRENT MICROBIOLOGY, 2017, 74 (03) : 325 - 333
  • [2] Effects of Soil Amendments on Coastal Saline-alkali Soil Improvement And the Growth of Plants
    Huang Zhanbin
    Sun Zaijin
    Lu Zhaohua
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 152 - 159
  • [3] Characteristics of saline-alkali land and resources based on three-layer fusion of saline-alkali soil in Songnen Plain of China
    Yao D.
    Liao Y.
    Kong X.
    Gao B.
    Zhao Z.
    Zhang Y.
    Cao Y.
    Li L.
    Ma Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (23): : 247 - 257
  • [4] Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil
    He, Kang
    He, Guo
    Wang, Congpeng
    Zhang, Hongpeng
    Xu, Yan
    Wang, Shumin
    Kong, Yingzhen
    Zhou, Gongke
    Hu, Ruibo
    APPLIED SOIL ECOLOGY, 2020, 155
  • [5] Vermicompost Combined with Soil Conditioner Improves the Ecosystem Multifunctionality in Saline-Alkali Land
    Ai, Feng
    He, Linwei
    Li, Qiang
    Li, Binbin
    Zhang, Kaiyu
    Yang, Hang
    Zhang, Chenchen
    WATER, 2023, 15 (17)
  • [6] Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China
    Xia, Jiangbao
    Ren, Jiayun
    Zhang, Shuyong
    Wang, Yuehai
    Fang, Ying
    GEODERMA, 2019, 349 : 25 - 35
  • [7] Parameter Calibration Method for Discrete Element Simulation of Soil-Wheat Crop Residues in Saline-Alkali Coastal Land
    Liu, Jie
    Lu, Tong
    Zheng, Shuai
    Tian, Yu
    Han, Miaomiao
    Tai, Muhao
    He, Xiaoning
    Li, Hongxiu
    Wang, Dongwei
    Zhao, Zhuang
    AGRICULTURE-BASEL, 2025, 15 (02):
  • [8] Effect of Biochar on Ammonia Volatilization in Saline-Alkali Soil
    Wang Y.-Y.
    Wang S.-S.
    Dai J.-L.
    Huanjing Kexue/Environmental Science, 2019, 40 (08): : 3738 - 3745
  • [9] Research on saline-alkali soil amelioration with FGD gypsum
    Wang, S. J.
    Chen, Q.
    Li, Y.
    Zhuo, Y. Q.
    Xu, L. Z.
    RESOURCES CONSERVATION AND RECYCLING, 2017, 121 : 82 - 92
  • [10] Improving soil properties and Sesbania growth through combined organic amendment strategies in a coastal saline-alkali soil
    Liu, Bin
    Jia, Peiyin
    Zou, Jiasheng
    Ren, Haixi
    Xi, Min
    Jiang, Zhixiang
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 374