More limit cycles for complex differential equations with three monomials

被引:0
|
作者
Alvarez, M. J. [1 ]
Coll, B. [1 ]
Gasull, A. [2 ,3 ]
Prohens, R. [1 ]
机构
[1] Univ Illes Balears, Inst Appl Comp & Community Code IAC3, Dept Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, Edifici C, Barcelona 08193, Spain
[3] Ctr Recerca Matemat, Edifici Cc,Campus Bellaterra, Barcelona 08193, Spain
关键词
Polynomial differential equation; Number of limit cycles; Centre-focus problem; Lyapunov quantities; VECTOR-FIELDS;
D O I
10.1016/j.jde.2024.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we improve, by almost doubling, the existing lower bound for the number of limit cycles of the family of complex differential equations with three monomials, z(center dot) = Azkz<overline>l + Bzmz<overline>n + Czpz<overline>q, being k,l, m, n, p, q non-negative integers and A, B, C is an element of C. More concretely, if N = max (k + l, m + n, p + q) and H3(N) is an element of N boolean OR {infinity} denotes the maximum number of limit cycles of the above equations, we show that for N >= 4, H3(N) >= N - 3 and that for some values of N this new lower bound is N + 1. We also present examples with many limit cycles and different configurations. Finally, we show that H 3 ( 2 ) >= 2 and study in detail the quadratic case with three monomials proving in some of them non-existence, uniqueness or existence of exactly two limit cycles. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses/by /4 .0/).
引用
收藏
页码:1071 / 1098
页数:28
相关论文
共 50 条
  • [1] Uniqueness of the limit cycles for complex differential equations with two monomials
    alvarez, M. J.
    Gasull, A.
    Prohens, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [2] ON A FAMILY OF POLYNOMIAL DIFFERENTIAL EQUATIONS HAVING AT MOST THREE LIMIT CYCLES
    Gasull, Armengol
    Zhao, Yulin
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 191 - 203
  • [3] On the polynomial limit cycles of polynomial differential equations
    Gine, Jaume
    Grau, Maite
    Llibre, Jaume
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 181 (01) : 461 - 475
  • [4] Rational limit cycles of Abel differential equations
    Luis Bravo, Jose
    Angel Calderon, Luis
    Ojeda, Ignacio
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (47) : 1 - 13
  • [5] On the polynomial limit cycles of polynomial differential equations
    Jaume Giné
    Maite Grau
    Jaume Llibre
    Israel Journal of Mathematics, 2011, 181 : 461 - 475
  • [6] Limit cycles of piecewise differential equations on the cylinder
    Bakhshalizadeh, Ali
    Llibre, Jaume
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170
  • [7] Diophantine equations with three monomials
    Grechuk, Bogdan
    Grechuk, Tetiana
    Wilcox, Ashleigh
    JOURNAL OF NUMBER THEORY, 2023, 253 : 69 - 108
  • [8] More limit cycles than expected in Lienard equations
    Dumortier, Freddy
    Panazzolo, Daniel
    Roussarie, Robert
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1895 - 1904
  • [9] Limit cycles of the generalized polynomial Lienard differential equations
    Llibre, Jaume
    Mereu, Ana Cristina
    Teixeira, Marco Antonio
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 363 - 383
  • [10] Limit cycles for 3-monomial differential equations
    Gasull, Armengol
    Li, Chengzhi
    Torregrosa, Joan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (02) : 735 - 749