PICK: Predict and Mask for Semi-supervised Medical Image Segmentation

被引:1
作者
Zeng, Qingjie [1 ]
Lu, Zilin [1 ]
Xie, Yutong [2 ]
Xia, Yong [1 ,3 ,4 ]
机构
[1] Northwestern Polytech Univ, Natl Engn Lab Integrated Aerosp Ground Ocean Big D, 1 Dongxiang Rd, Xian 710072, Shaanxi, Peoples R China
[2] Univ Adelaide, Australian Inst Machine Learning, Adelaide, SA 5000, Australia
[3] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
[4] Northwestern Polytech Univ, Ningbo Inst, Ningbo 315048, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Medical image segmentation; Attentive region masking; Reconstruction;
D O I
10.1007/s11263-024-02328-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pseudo-labeling and consistency-based co-training are established paradigms in semi-supervised learning. Pseudo-labeling focuses on selecting reliable pseudo-labels, while co-training emphasizes sub-network diversity for complementary information extraction. However, both paradigms struggle with the inevitable erroneous predictions from unlabeled data, which poses a risk to task-specific decoders and ultimately impact model performance. To address this challenge, we propose a PredICt-and-masK (PICK) model for semi-supervised medical image segmentation. PICK operates by masking and predicting pseudo-label-guided attentive regions to exploit unlabeled data. It features a shared encoder and three task-specific decoders. Specifically, PICK employs a primary decoder supervised solely by labeled data to generate pseudo-labels, identifying potential targets in unlabeled data. The model then masks these regions and reconstructs them using a masked image modeling (MIM) decoder, optimizing through a reconstruction task. To reconcile segmentation and reconstruction, an auxiliary decoder is further developed to learn from the reconstructed images, whose predictions are constrained by the primary decoder. We evaluate PICK on five medical benchmarks, including single organ/tumor segmentation, multi-organ segmentation, and domain-generalized tasks. Our results indicate that PICK outperforms state-of-the-art methods. The code is available at https://github.com/maxwell0027/PICK.
引用
收藏
页码:3296 / 3311
页数:16
相关论文
共 63 条
[1]   nocaps: novel object captioning at scale [J].
Agrawal, Harsh ;
Desai, Karan ;
Wang, Yufei ;
Chen, Xinlei ;
Jain, Rishabh ;
Johnson, Mark ;
Batra, Dhruv ;
Parikh, Devi ;
Lee, Stefan ;
Anderson, Peter .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8947-8956
[2]  
[Anonymous], 2016, INT CONF 3D VISION, DOI DOI 10.1109/3DV.2016.79
[3]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation [J].
Bai, Yunhao ;
Chen, Duowen ;
Li, Qingli ;
Shen, Wei ;
Wang, Yan .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :11514-11524
[5]   Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge [J].
Campello, Victor M. ;
Gkontra, Polyxeni ;
Izquierdo, Cristian ;
Martin-Isla, Carlos ;
Sojoudi, Alireza ;
Full, Peter M. ;
Maier-Hein, Klaus ;
Zhang, Yao ;
He, Zhiqiang ;
Ma, Jun ;
Parreno, Mario ;
Albiol, Alberto ;
Kong, Fanwei ;
Shadden, Shawn C. ;
Acero, Jorge Corral ;
Sundaresan, Vaanathi ;
Saber, Mina ;
Elattar, Mustafa ;
Li, Hongwei ;
Menze, Bjoern ;
Khader, Firas ;
Haarburger, Christoph ;
Scannell, Cian M. ;
Veta, Mitko ;
Carscadden, Adam ;
Punithakumar, Kumaradevan ;
Liu, Xiao ;
Tsaftaris, Sotirios A. ;
Huang, Xiaoqiong ;
Yang, Xin ;
Li, Lei ;
Zhuang, Xiahai ;
Vilades, David ;
Descalzo, Martin L. ;
Guala, Andrea ;
La Mura, Lucia ;
Friedrich, Matthias G. ;
Garg, Ria ;
Lebel, Julie ;
Henriques, Filipe ;
Karakas, Mahir ;
Cavus, Ersin ;
Petersen, Steffen E. ;
Escalera, Sergio ;
Segui, Santi ;
Rodriguez-Palomares, Jose F. ;
Lekadir, Karim .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3543-3554
[6]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[7]  
Chen B., 2022, DEBIASED SELF TRAINI, V35, P32424
[8]   MagicNet: Semi-Supervised Multi-Organ Segmentation via Magic-Cube Partition and Recovery [J].
Chen, Duowen ;
Bai, Yunhao ;
Shen, Wei ;
Li, Qingli ;
Yu, Lequan ;
Wang, Yan .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :23869-23878
[9]  
Chen H., 2022, ARXIV
[10]  
Chen Hong-You, 2022, ICLR