The Geometry of Generalised Spinr Spinors on Projective Spaces

被引:0
作者
Artacho, Diego [1 ]
Hofmann, Jordan [2 ]
机构
[1] Imperial Coll London, London SW7 2AZ, England
[2] Kings Coll London, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
special spinors; projective spaces; generalized spin structures; spinc; spinh; KILLING SPINORS; PARALLEL; REPRESENTATION; EIGENVALUE; BUNDLES;
D O I
10.3842/SIGMA.2025.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we adapt the characterisation of the spin representation via exterior forms to the generalised spinr context. We find new invariant spinr spinors on the projective spaces CPn, HPn, and the Cayley plane OP2 for all their homogeneous realisations. Specifically, for each of these realisations, we provide a complete description of the space of invariant spinr spinors for the minimum value of r for which this space is non-zero. Additionally, we demonstrate some geometric implications of the existence of special spinr spinors on these spaces.
引用
收藏
页数:32
相关论文
共 44 条
[1]  
Agricola I., Chiossi S.G., Friedrich T., Holl J., Spinorial description of SU(3)-and G<sub>2</sub>-manifolds, J. Geom. Phys, 98, pp. 535-555, (2015)
[2]  
Agricola I., Hofmann J., Lawn M.-A., Invariant spinors on homogeneous spheres, Differential Geom. Appl, 89, (2023)
[3]  
Agricola I., Naujoks H., Theiss M., Geometry of principal fibre bundles
[4]  
Albanese M., Milivojevic A., Spin<sup>h</sup> and further generalisations of spin, J. Geom. Phys, 164, (2021)
[5]  
Artacho D., Lawn M.-A., structures on homogeneous spaces
[6]  
Arvanitoyeorgos A., An introduction to Lie groups and the geometry of homogeneous spaces, Stud. Math. Libr, 22, (2003)
[7]  
Baez J.C., The octonions, Bull. Amer. Math. Soc. (N.S.), 39, pp. 145-205, (2002)
[8]  
Bar C., Real Killing spinors and holonomy, Comm. Math. Phys, 154, pp. 509-521, (1993)
[9]  
Baum H., Friedrich T., Grunewald R., Kath I., Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte Math, 124, (1991)
[10]  
Bayard P., Lawn M.-A., Roth J., Spinorial representation of submanifolds in Riemannian space forms, Pacific J. Math, 291, pp. 51-80, (2017)