Knowledge guided fuzzy deep reinforcement learning

被引:0
|
作者
Qin, Peng [1 ]
Zhao, Tao [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge guide; Fuzzy system; Reinforcement learning; Deep Q-network;
D O I
10.1016/j.eswa.2024.125823
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning (RL) addresses complex sequential decision-making problems through interactive trial- and-error and the handling of delayed rewards. However, reinforcement learning typically starts from scratch, necessitating extensive exploration, which results in low learning efficiency. In contrast, humans often leverage prior knowledge to learn. Inspired by this, this paper proposes a semantic knowledge-guided reinforcement learning method (KFDQN), which fully utilizes knowledge to influence reinforcement learning, thereby improving learning efficiency, training stability, and performance. In terms of knowledge representation, considering the strong fuzziness of semantic knowledge, a fuzzy system is constructed to represent this knowledge. In terms of knowledge integration, a knowledge-guided framework that integrates a hybrid action selection strategy (HYAS), a hybrid learning method (HYL), and knowledge updating is constructed in conjunction with the existing reinforcement learning framework. The HYAS integrates knowledge into action selection, reducing the randomness of traditional exploration methods. The HYL incorporates knowledge into the learning target, thereby reducing uncertainty in the learning objective. Knowledge updating ensures that new data is utilized to update knowledge, avoiding the negative impact of knowledge limitations on the learning process. The algorithm is validated through numerical tasks in OpenAI Gym and real-world mobile robot Goal Reach and obstacle avoidance tasks. The results confirm that the algorithm effectively combines knowledge and reinforcement learning, resulting in a 28.6% improvement in learning efficiency, a 19.56% enhancement in performance, and increased training stability.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] User-Guided Personalized Image Aesthetic Assessment Based on Deep Reinforcement Learning
    Lv, Pei
    Fan, Jianqi
    Nie, Xixi
    Dong, Weiming
    Jiang, Xiaoheng
    Zhou, Bing
    Xu, Mingliang
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 736 - 749
  • [42] A Survey on Reinforcement Learning and Deep Reinforcement Learning for Recommender Systems
    Rezaei, Mehrdad
    Tabrizi, Nasseh
    DEEP LEARNING THEORY AND APPLICATIONS, DELTA 2023, 2023, 1875 : 385 - 402
  • [43] Reinforcement Learning Guided Symbolic Execution
    Wu, Jie
    Zhang, Chengyu
    Pu, Geguang
    PROCEEDINGS OF THE 2020 IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER '20), 2020, : 662 - 663
  • [44] Relational reinforcement learning with guided demonstrations
    Martinez, David
    Alenya, Guillem
    Torras, Carme
    ARTIFICIAL INTELLIGENCE, 2017, 247 : 295 - 312
  • [45] A Dual Deep Network Based Secure Deep Reinforcement Learning Method
    Zhu F.
    Wu W.
    Fu Y.-C.
    Liu Q.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (08): : 1812 - 1826
  • [46] A Survey on Deep Reinforcement Learning
    Liu Q.
    Zhai J.-W.
    Zhang Z.-Z.
    Zhong S.
    Zhou Q.
    Zhang P.
    Xu J.
    2018, Science Press (41): : 1 - 27
  • [47] Deep Reinforcement Learning in Medicine
    Jonsson, Anders
    KIDNEY DISEASES, 2019, 5 (01) : 18 - 22
  • [48] Implementation of Deep Reinforcement Learning
    Li, Meng-Jhe
    Li, An-Hong
    Huang, Yu-Jung
    Chu, Shao-I
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (ICISS 2019), 2019, : 232 - 236
  • [49] Traffic Signal Control with State-Optimizing Deep Reinforcement Learning and Fuzzy Logic
    Meepokgit, Teerapun
    Wisayataksin, Sumek
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [50] Deep reinforcement learning: a survey
    Hao-nan Wang
    Ning Liu
    Yi-yun Zhang
    Da-wei Feng
    Feng Huang
    Dong-sheng Li
    Yi-ming Zhang
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1726 - 1744