Automatically quantified follow-up imaging biomarkers predict clinical outcomes after acute ischemic stroke

被引:0
作者
Abraham, Sonya [1 ]
Carone, Davide [2 ,3 ]
Mielke, Orell [4 ]
Heise, Mark [1 ]
Swierczak, Agnieszka [5 ]
Bass, Greg [5 ]
Gerry, Stephen [6 ]
Woodhead, Zoe V. J. [2 ]
Namias, Rafael [2 ]
Garrard, James [2 ]
Kallmes, David [7 ]
Brinjikji, Waleed [7 ]
Vaclavik, Daniel [8 ]
Mikulenka, Petr [9 ,10 ]
Nicholson, Patrick [11 ,12 ]
Thornton, John [11 ,12 ]
Ford, Gary A. [3 ,13 ]
Harston, George [2 ,3 ]
机构
[1] CSL Behring, King Of Prussia, PA USA
[2] Brainomix Ltd, Oxford, England
[3] Oxford Univ Hosp NHS FT, Oxford, England
[4] CSL Behring, Marburg, Germany
[5] CSL Innovat, Melbourne, Vic, Australia
[6] Univ Oxford, Ctr Stat Med, Nuffield Dept Orthopaed Rheumatol & Musculoskeleta, Oxford, England
[7] Mayo Clin, Rochester, MN USA
[8] Nemocnice AGEL, Ostrava, Czech Republic
[9] Charles Univ Prague, Fac Med 3, Dept Neurol, Prague, Czech Republic
[10] Univ Hosp Kralovske Vinohrady, Prague, Czech Republic
[11] Beaumont Hosp, Dublin, Ireland
[12] Royal Coll Surgeons Ireland, Dept Radiol, Dublin, Ireland
[13] Univ Oxford, Div Med Sci, Oxford, England
来源
FRONTIERS IN NEUROLOGY | 2025年 / 16卷
关键词
ischemic stroke; imaging; neuroimaging; follow-up studies; thrombectomy; artificial intelligence; REGISTRATION; GUIDELINE;
D O I
10.3389/fneur.2025.1483138
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Follow-up infarct volume (FIV) is a proposed surrogate endpoint for proof-of-concept clinical studies in acute ischemic stroke (AIS). This study aimed to provide clinical validation of an automated FIV algorithm, demonstrating the association of imaging biomarkers with clinical outcomes to support the use of these imaging endpoints in clinical trials. Methods Data were gathered for adult AIS patients undergoing mechanical thrombectomy with follow-up imaging 12-96 h from initial assessment. Non-contrast computed tomography was used to quantify infarct volume. Image processing used the AI-powered software Brainomix 360 Stroke (Brainomix Ltd., Oxford, United Kingdom) and Brainomix core lab research software. Measures included total FIV and components-ischemic injury corrected FIV (cFIV), hemorrhagic transformation (HT), anatomical distortion (AD; a marker of edema) and infarct growth (IG). The primary clinical endpoint was modified Rankin Scale (mRS) at 90 days; secondary clinical endpoint was NIH Stroke Scale (NIHSS) score at 24 h. Results Of 986 patients, 843 (85.5%; median age 72 years, 56.7% male) had complete data and were included in the study analysis. Median baseline NIHSS score was 17 (IQR: 12-21). Median imaging follow-up time was 24 h (IQR 20-28). Median 24 h NIHSS score was 11 (5-17); 34% of patients had mRS 0-2 at 90 days. Median FIV was 30.2 mL (12.5-120.8 mL). FIV was significantly associated with 90-day mRS (concordance = 0.819, p < 0.001) and NIHSS at 24 h (concordance = 0.722, p < 0.001). cFIV, HT, AD, and IG were also significantly associated with good clinical outcomes in both 90-day mRS (concordance = 0.702, p < 0.001; 0.660, p < 0.001; 0.591, p = 0.002; and 0.663, p < 0.001, respectively) and NIHSS at 24 h (0.774, p < 0.001; 0.652, p = 0.004 L; 0.694, p < 0.001; and 0.716, p < 0.001, respectively). In multivariate analysis, FIV remained strongly associated with 90-day mRS. FIV showed a bimodal distribution consistent with success/failure of recanalization during thrombectomy. Conclusion Of the algorithm outputs assessed, FIV was most strongly associated with clinical outcomes. Ischemic injury, HT, edema and IG were also independently significantly associated with clinical outcome. This study validates the prognostic significance of automated FIV and its composites as mechanistic endpoints to improve early-stage trials of therapeutics in AIS.
引用
收藏
页数:11
相关论文
共 26 条
[11]   Optimizing image registration and infarct definition in stroke research [J].
Harston, George W. J. ;
Minks, David ;
Sheerin, Fintan ;
Payne, Stephen J. ;
Chappell, Michael ;
Jezzard, Peter ;
Jenkinson, Mark ;
Kennedy, James .
ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2017, 4 (03) :166-174
[12]   Automated quantification of atrophy and acute ischemic volume for outcome prediction in endovascular thrombectomy [J].
Kis, Balazs ;
Neuhaus, Ain A. ;
Harston, George ;
Joly, Olivier ;
Carone, Davide ;
Gerry, Stephen ;
Chadaide, Zoltan ;
Panczel, Andras ;
Czifrus, Eszter ;
Csike, Viktoria ;
Suranyi, Agnes ;
Szikora, Istvan ;
Eross, Lorand .
FRONTIERS IN NEUROLOGY, 2022, 13
[13]   Machine learning volumetry of ischemic brain lesions on CT after thrombectomy-prospective diagnostic accuracy study in ischemic stroke patients [J].
Kral, Jiri ;
Cabal, Martin ;
Kasickova, Linda ;
Havelka, Jaroslav ;
Jonszta, Tomas ;
Volny, Ondrej ;
Bar, Michal .
NEURORADIOLOGY, 2020, 62 (10) :1239-1245
[14]   The Value, Qualification, and Regulatory Use of Surrogate End Points in Drug Development [J].
Lathia, C. D. ;
Amakye, D. ;
Dai, W. ;
Girman, C. ;
Madani, S. ;
Mayne, J. ;
MacCarthy, P. ;
Pertel, P. ;
Seman, L. ;
Stoch, A. ;
Tarantino, P. ;
Webster, C. ;
Williams, S. ;
Wagner, J. A. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2009, 86 (01) :32-43
[15]   Comparison of automated ASPECTS, large vessel occlusion detection and CTP analysis provided by Brainomix and RapidAI in patients with suspected ischaemic stroke [J].
Mallon, Dermot H. ;
Taylor, Eleanor J. R. ;
Vittay, Orsolya, I ;
Sheeka, Alexander ;
Doig, David ;
Lobotesis, Kyriakos .
JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2022, 31 (10)
[16]   A systematic review and synthesis of global stroke guidelines on behalf of the World Stroke Organization [J].
Mead, Gillian E. ;
Sposato, Luciano A. ;
Sampaio Silva, Gisele ;
Yperzeele, Laetitia ;
Wu, Simiao ;
Kutlubaev, Mansur ;
Cheyne, Joshua ;
Wahab, Kolawole ;
Urrutia, Victor C. ;
Sharma, Vijay K. ;
Sylaja, P. N. ;
Hill, Kelvin ;
Steiner, Thorsten ;
Liebeskind, David S. ;
Rabinstein, Alejandro A. .
INTERNATIONAL JOURNAL OF STROKE, 2023, 18 (05) :499-531
[17]   e-ASPECTS derived acute ischemic volumes on non-contrast-enhanced computed tomography images [J].
Nagel, Simon ;
Joly, Olivier ;
Pfaff, Johannes ;
Papanagiotou, Panagiotis ;
Fassbender, Klaus ;
Reith, Wolfgang ;
Moehlenbruch, Markus A. ;
Herweh, Christian ;
Grunwald, Iris Q. .
INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (09) :995-1001
[18]   Baseline ASPECTS and e-ASPECTS Correlation with Infarct Volume and Functional Outcome in Patients Undergoing Mechanical Thrombectomy [J].
Olive-Gadea, Marta ;
Martins, Nuno ;
Boned, Sandra ;
Carvajal, Jaime ;
Moreno, Maria Jose ;
Muchada, Marian ;
Molina, Carlos A. ;
Tomasello, Alejandro ;
Ribo, Marc ;
Rubiera, Marta .
JOURNAL OF NEUROIMAGING, 2019, 29 (02) :198-202
[19]   Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association [J].
Powers, William J. ;
Rabinstein, Alejandro A. ;
Ackerson, Teri ;
Adeoye, Opeolu M. ;
Bambakidis, Nicholas C. ;
Becker, Kyra ;
Biller, Jose ;
Brown, Michael ;
Demaerschalk, Bart M. ;
Hoh, Brian ;
Jauch, Edward C. ;
Kidwell, Chelsea S. ;
Leslie-Mazwi, Thabele M. ;
Ovbiagele, Bruce ;
Scott, Phillip A. ;
Sheth, Kevin N. ;
Southerland, Andrew M. ;
Summers, Deborah, V ;
Tirschwell, David L. .
STROKE, 2019, 50 (12) :E344-E418
[20]   Posttreatment Variables Improve Outcome Prediction after Intra-Arterial Therapy for Acute Ischemic Stroke [J].
Prabhakaran, Shyam ;
Jovin, Tudor G. ;
Tayal, Ashis H. ;
Hussain, Muhammad S. ;
Nguyen, Thanh N. ;
Sheth, Kevin N. ;
Terry, John B. ;
Nogueira, Raul G. ;
Horev, Anat ;
Gandhi, Dheeraj ;
Wisco, Dolora ;
Glenn, Brenda A. ;
Ludwig, Bryan ;
Clemmons, Paul F. ;
Cronin, Carolyn A. ;
Tian, Melissa ;
Liebeskind, David ;
Zaidat, Osama O. ;
Castonguay, Alicia C. ;
Martin, Coleman ;
Mueller-Kronast, Nils ;
English, Joey D. ;
Linfante, Italo ;
Malisch, Timothy W. ;
Gupta, Rishi .
CEREBROVASCULAR DISEASES, 2014, 37 (05) :356-363