Evaluating the Application of Machine Learning in Predicting the Mortality of Hospitalized COVID-19 Patients Using the Confusion Matrix and the Matthews Correlation Coefficient

被引:0
|
作者
Salari, Maryam [1 ]
Sadati, Seyed Masoud [2 ]
Sedaghat, Alireza [3 ]
Abbasi, Bita [4 ]
Zamanpour, Seyed Amir [5 ]
Khodashahi, Rozita [6 ]
Davoudi, Mostafa [1 ]
机构
[1] Mashhad Univ Med Sci, Sch Hlth, Dept Biostat, Mashhad, Iran
[2] Mashhad Univ Med Sci, Imam Reza Hosp, Ctr Stat & Informat Technol Management, Mashhad, Iran
[3] Mashhad Univ Med Sci, Fac Med, Lung Dis Res Ctr, Mashhad, Iran
[4] Mashhad Univ Med Sci, Mashhad, Iran
[5] Mashhad Univ Med Sci, Fac Med, Dept Med Phys, Mashhad, Iran
[6] Mashhad Univ Med Sci, Clin Res Inst, Transplant Res Ctr, Mashhad, Iran
来源
ARCHIVES OF CLINICAL INFECTIOUS DISEASES | 2025年 / 20卷 / 02期
关键词
Machine Learning; COVID-19; Adaptive Boosting; HRCT; Laboratory Tests; LYMPHOCYTE COUNT; SEVERITY; RISK; PNEUMONIA;
D O I
10.5812/archcid-150150
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: The COVID-19 pandemic, which occurred between 2019 and 2023, posed a significant threat to global health. Its high transmissibility, the emergence of new variants, and the novel nature of the disease made treatment and control highly challenging. Objectives: This study aimed to develop an algorithm for predicting the mortality of hospitalized COVID-19 patients using machine learning methods. Methods: This cross-sectional study was conducted on 581 hospitalized COVID-19 patients. The approach integrated multi- model features derived from computed tomography (CT) scans and electronic health record (EHR) data. High-resolution computed tomography (HRCT) images were initially processed using the Pulmonary Toolkit package in MATLAB software. Subsequently, the extracted variables were entered into the model as predictive factors, alongside demographic characteristics, underlying conditions, and laboratory results of the patients. The machine learning model was developed using the AdaBoost method by incorporating demographic and laboratory data with HRCT features. Results: In this study, 581 hospitalized COVID-19 patients were included. Among them, 199 (34.25%) patients died, while 382 (65.75%) recovered. According to the machine learning algorithm, the most effective variables for predicting COVID-19 mortality were lymphocyte variables, CRP, age, mean lung density, lung tissue percentage, RBC count, D-dimer levels, and emphysema. The MCC Index in this study was 0.73, and the area under the ROC curve was 0.96. Conclusions: According to our results, the three variables with the greatest impact on predicting mortality in COVID-19 patients were related to HRCT findings, laboratory results, and patient age. Therefore, it is recommended that, given the high cost of HRCT, this diagnostic test should only be performed if other risk factors are identified in laboratory results. If necessary, HRCT should be conducted promptly.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Predicting Clinical Outcomes in COVID-19 and Pneumonia Patients: A Machine Learning Approach
    Cai, Kaida
    Wang, Zhengyan
    Yang, Xiaofang
    Fu, Wenzhi
    Zhao, Xin
    VIRUSES-BASEL, 2024, 16 (10):
  • [22] COVID-19 Mortality Prediction Using Machine Learning Techniques
    Schirato, Lindsay
    Makina, Kennedy
    Flanders, Dwayne
    Pouriyeh, Seyedamin
    Shahriar, Hossain
    2021 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (ICDH 2021), 2021, : 197 - 202
  • [23] Machine learning algorithms for predicting determinants of COVID-19 mortality in South Africa
    Chimbunde, Emmanuel
    Sigwadhi, Lovemore N.
    Tamuzi, Jacques L.
    Okango, Elphas L.
    Daramola, Olawande
    Ngah, Veranyuy D.
    Nyasulu, Peter S.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [24] Development of a Predictive Model for Mortality in Hospitalized Patients With COVID-19
    Niu, Yuanyuan
    Zhan, Zan
    Li, Jianfeng
    Shui, Wei
    Wang, Changfeng
    Xing, Yanli
    Zhang, Changran
    DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS, 2022, 16 (04) : 1398 - 1406
  • [25] Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
    Vaid, Akhil
    Jaladanki, Suraj K.
    Xu, Jie
    Teng, Shelly
    Kumar, Arvind
    Lee, Samuel
    Somani, Sulaiman
    Paranjpe, Ishan
    De Freitas, Jessica K.
    Wanyan, Tingyi
    Johnson, Kipp W.
    Bicak, Mesude
    Klang, Eyal
    Kwon, Young Joon
    Costa, Anthony
    Zhao, Shan
    Miotto, Riccardo
    Charney, Alexander W.
    Boettinger, Erwin
    Fayad, Zahi A.
    Nadkarni, Girish N.
    Wang, Fei
    Glicksberg, Benjamin S.
    JMIR MEDICAL INFORMATICS, 2021, 9 (01)
  • [26] Using Machine Learning to Predict ICU Transfer in Hospitalized COVID-19 Patients
    Cheng, Fu-Yuan
    Joshi, Himanshu
    Tandon, Pranai
    Freeman, Robert
    Reich, David L.
    Mazumdar, Madhu
    Kohli-Seth, Roopa
    Levin, Matthew A.
    Timsina, Prem
    Kia, Arash
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (06)
  • [27] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [28] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [29] A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2
    Bottrighi, Alessio
    Pennisi, Marzio
    Roveta, Annalisa
    Massarino, Costanza
    Cassinari, Antonella
    Betti, Marta
    Bolgeo, Tatiana
    Bertolotti, Marinella
    Rava, Emanuele
    Maconi, Antonio
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [30] A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2
    Alessio Bottrighi
    Marzio Pennisi
    Annalisa Roveta
    Costanza Massarino
    Antonella Cassinari
    Marta Betti
    Tatiana Bolgeo
    Marinella Bertolotti
    Emanuele Rava
    Antonio Maconi
    BMC Medical Informatics and Decision Making, 22