Evaluating the Application of Machine Learning in Predicting the Mortality of Hospitalized COVID-19 Patients Using the Confusion Matrix and the Matthews Correlation Coefficient

被引:0
|
作者
Salari, Maryam [1 ]
Sadati, Seyed Masoud [2 ]
Sedaghat, Alireza [3 ]
Abbasi, Bita [4 ]
Zamanpour, Seyed Amir [5 ]
Khodashahi, Rozita [6 ]
Davoudi, Mostafa [1 ]
机构
[1] Mashhad Univ Med Sci, Sch Hlth, Dept Biostat, Mashhad, Iran
[2] Mashhad Univ Med Sci, Imam Reza Hosp, Ctr Stat & Informat Technol Management, Mashhad, Iran
[3] Mashhad Univ Med Sci, Fac Med, Lung Dis Res Ctr, Mashhad, Iran
[4] Mashhad Univ Med Sci, Mashhad, Iran
[5] Mashhad Univ Med Sci, Fac Med, Dept Med Phys, Mashhad, Iran
[6] Mashhad Univ Med Sci, Clin Res Inst, Transplant Res Ctr, Mashhad, Iran
来源
ARCHIVES OF CLINICAL INFECTIOUS DISEASES | 2025年 / 20卷 / 02期
关键词
Machine Learning; COVID-19; Adaptive Boosting; HRCT; Laboratory Tests; LYMPHOCYTE COUNT; SEVERITY; RISK; PNEUMONIA;
D O I
10.5812/archcid-150150
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: The COVID-19 pandemic, which occurred between 2019 and 2023, posed a significant threat to global health. Its high transmissibility, the emergence of new variants, and the novel nature of the disease made treatment and control highly challenging. Objectives: This study aimed to develop an algorithm for predicting the mortality of hospitalized COVID-19 patients using machine learning methods. Methods: This cross-sectional study was conducted on 581 hospitalized COVID-19 patients. The approach integrated multi- model features derived from computed tomography (CT) scans and electronic health record (EHR) data. High-resolution computed tomography (HRCT) images were initially processed using the Pulmonary Toolkit package in MATLAB software. Subsequently, the extracted variables were entered into the model as predictive factors, alongside demographic characteristics, underlying conditions, and laboratory results of the patients. The machine learning model was developed using the AdaBoost method by incorporating demographic and laboratory data with HRCT features. Results: In this study, 581 hospitalized COVID-19 patients were included. Among them, 199 (34.25%) patients died, while 382 (65.75%) recovered. According to the machine learning algorithm, the most effective variables for predicting COVID-19 mortality were lymphocyte variables, CRP, age, mean lung density, lung tissue percentage, RBC count, D-dimer levels, and emphysema. The MCC Index in this study was 0.73, and the area under the ROC curve was 0.96. Conclusions: According to our results, the three variables with the greatest impact on predicting mortality in COVID-19 patients were related to HRCT findings, laboratory results, and patient age. Therefore, it is recommended that, given the high cost of HRCT, this diagnostic test should only be performed if other risk factors are identified in laboratory results. If necessary, HRCT should be conducted promptly.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Predicting Mortality in Hospitalized COVID-19 Patients in Zambia: An Application of Machine Learning
    Mulenga, Clyde
    Kaonga, Patrick
    Hamoonga, Raymond
    Mazaba, Mazyanga Lucy
    Chabala, Freeman
    Musonda, Patrick
    GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS, 2023, 2023
  • [2] Predicting Risk of Mortality in COVID-19 Hospitalized Patients using Hybrid Machine Learning Algorithms
    Afrash M.R.
    Shanbehzadeh M.
    Kazemi-Arpanahi H.
    Journal of Biomedical Physics and Engineering, 2022, 12 (06): : 611 - 626
  • [3] Predicting mortality in hospitalized COVID-19 patients
    Amedeo Tirandi
    Davide Ramoni
    Fabrizio Montecucco
    Luca Liberale
    Internal and Emergency Medicine, 2022, 17 : 1571 - 1574
  • [4] Predicting mortality in hospitalized COVID-19 patients
    Tirandi, Amedeo
    Ramoni, Davide
    Montecucco, Fabrizio
    Liberale, Luca
    INTERNAL AND EMERGENCY MEDICINE, 2022, 17 (06) : 1571 - 1574
  • [5] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [6] Predicting in-Hospital Mortality of Patients with COVID-19 Using Machine Learning Techniques
    Tezza, Fabiana
    Lorenzoni, Giulia
    Azzolina, Danila
    Barbar, Sofia
    Leone, Lucia Anna Carmela
    Gregori, Dario
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (05):
  • [8] Identifying factors related to mortality of hospitalized COVID-19 patients using machine learning methods
    Hamidi, Farzaneh
    Hamishehkar, Hadi
    Markid, Pedram Pirmad Azari
    Sarbakhsh, Parvin
    HELIYON, 2024, 10 (15)
  • [9] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Baker, Timothy B.
    Loh, Wei-Yin
    Piasecki, Thomas M.
    Bolt, Daniel M.
    Smith, Stevens S.
    Slutske, Wendy S.
    Conner, Karen L.
    Bernstein, Steven L.
    Fiore, Michael C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Timothy B. Baker
    Wei-Yin Loh
    Thomas M. Piasecki
    Daniel M. Bolt
    Stevens S. Smith
    Wendy S. Slutske
    Karen L. Conner
    Steven L. Bernstein
    Michael C. Fiore
    Scientific Reports, 13