Al2O3 growth on Ge by low-temperature (∼90 °C) atomic layer deposition and its application for MOS devices

被引:0
作者
Aso, Taisei [1 ]
Kuwazuru, Hajime [1 ]
Wang, Dong [2 ]
Yamamoto, Keisuke [2 ,3 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, 6-1 Kasuga Koen, Kasuga, Fukuoka 8158580, Japan
[2] Kyushu Univ, Fac Engn Sci, 6-1 Kasuga Koen, Kasuga, Fukuoka 8158580, Japan
[3] Kumamoto Univ, Res & Educ Inst Semicond & Informat, 2-39-1 Kurokami,Chuo Ku, Kumamoto 8608555, Japan
关键词
Ge; Gate stack; Atomic layer deposition; Low-temperature process; ALD; TRIS(DIMETHYLAMINO)SILANE; SILICON; IMPACT; FILMS; SIO2;
D O I
10.1016/j.mssp.2025.109372
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A low-temperature device process is necessary for germanium (Ge) and germanium tin (GeSn)-based novel electronics/optics/spintronics/flexible device applications. Concerning insulating layer formation for gate stack and passivation layer, atomic layer deposition (ALD) has been widely studied and applied due to advantages, as exemplified by precise film thickness control and excellent step coverage. However, low-temperature ALD has not been applied to the abovementioned Ge(Sn)-based novel devices. In this study, we investigated Al2O3 deposition using low-temperature (similar to 90 degrees C) ALD (without sample heating) on Ge substrates and examined methods to enhance film quality and electrical properties. We found that direct low-temperature ALD on Ge led to dimple formation, which we attribute to uneven ALD growth caused by variations in surface hydrophilicity. To avoid this, we introduced a GeO2 underlayer formed by electron cyclotron resonance (ECR) plasma before lowtemperature ALD, successfully preventing dimples and improving surface uniformity. The resulting Al/Al2O3/GeO2/Ge metal-oxide-semiconductor (MOS) capacitor demonstrated enhanced electrical characteristics. Additionally, a MOS field-effect transistor (FET) with gate stacks fabricated at a maximum gate stack process temperature of 130 degrees C exhibited typical operational behavior. This low-temperature ALD approach offers a promising pathway for low-temperature gate stack and passivation layer fabrication in emerging Ge(Sn)-based device applications.
引用
收藏
页数:6
相关论文
共 49 条
  • [1] Lai J.B., Chen L.J., Growth kinetics of amorphous interlayers in Ti thin films onepitaxial Si–Ge layers on silicon and germanium, J. Appl. Phys., 89, (2001)
  • [2] Mashanovich G.Z., Nedeljkovic M., Soler-Penades J., Qu Z., Cao W., Osman A., Wu Y., Stirling C.J., Qi Y., Cheng Y.X., Reid L., Littlejohns C.G., Kang J., Zhao Z., Takenaka M., Li T., Zhou Z., Gardes F.Y., Thomson D.J., Reed G.T., Group IV mid-infrared photonics, Opt. Mater. Express, 8, (2018)
  • [3] Ghani T., Armstrong M., Auth C., Bost M., Charvat P., Glass G., Hoffmann T., Johnson K., Kenyon C., Klaus J., McIntyre B., Mistry K., Murthy A., Sandford J., Silberstein M., Sivakumar S., Smith P., Zawadzki K., Thompson S., Bohr M., A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors, IEEE International Electron Devices Meeting 2003, (2003)
  • [4] Rafferty C., King C., Ackland B., O'Neill J., Aberg I., Sriram T.S., Mackay A., Johnson R., Monolithic germanium SWIR imaging array, 2008 IEEE Conference on Technologies for Homeland Security, Waltham, MA, USA, (2008)
  • [5] Toriumi A., Nishimura T., Germanium CMOS potential from material and process perspectives: Be more positive about germanium, Jpn. J. Appl. Phys., 57, (2018)
  • [6] Hamaya K., Fujita Y., Yamada M., Kawano M., Yamada S., Sawano K., Spin transport and relaxation in germanium, J. Phys. D Appl. Phys., 51, (2018)
  • [7] Yamamoto K., Matsuo T., Yamada M., Wagatsuma Y., Sawano K., Hamaya K., Electrical properties of a low-temperature fabricated Ge-based top-gate MOSFET structure with epitaxial ferromagnetic Heusler-alloy Schottky-tunnel source and drain, Mater. Sci. Semicond. Process., 167, (2023)
  • [8] Moto K., Yamamoto K., Imajo T., Suemasu T., Nakashima H., Toko K., Polycrystalline thin-film transistors fabricated on high-mobility solid-phase-crystallized Ge on glass, Appl. Phys. Lett., 114, (2019)
  • [9] Huang L., Moto K., Igura K., Ishiyama T., Toko K., Wang D., Yamamoto K., Low-temperature process design for inversion mode n-channel thin-film-transistor on polycrystalline Ge formed by solid-phase crystallization, Jpn. J. Appl. Phys., 63, (2024)
  • [10] Nakatsuka O., Tsutsui N., Shimura Y., Takeuchi S., Sakai A., Zaima S., Mobility behavior of Ge<sub>1-x</sub>Sn<sub>x</sub> layers grown on silicon-on-insulator substrates, Jpn. J. Appl. Phys., 49, (2010)