Clinical Whole-Body Gait Characterization Using a Single RGB-D Sensor

被引:0
作者
Boborzi, Lukas [1 ]
Bertram, Johannes [1 ]
Schniepp, Roman [2 ]
Decker, Julian [1 ,3 ]
Wuehr, Max [1 ,4 ]
机构
[1] Ludwig Maximilians Univ Munchen, LMU Univ Hosp, German Ctr Vertigo & Balance Disorders DSGZ, D-81377 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, LMU Univ Hosp, Inst Notfallmed & Medizinmanagement INM, D-80336 Munich, Germany
[3] Schon Klin Bad Aibling, D-83043 Bad Aibling, Germany
[4] Ludwig Maximilians Univ Munchen, LMU Univ Hosp, Dept Neurol, D-81377 Munich, Germany
关键词
gait analysis; gait disorders; motion tracking; pose tracking; RGB-D sensor; MICROSOFT KINECT; MOTION CAPTURE; RELIABILITY; DISORDERS; ADULTS; SCALE; MOTOR;
D O I
10.3390/s25020333
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Instrumented gait analysis is widely used in clinical settings for the early detection of neurological disorders, monitoring disease progression, and evaluating fall risk. However, the gold-standard marker-based 3D motion analysis is limited by high time and personnel demands. Advances in computer vision now enable markerless whole-body tracking with high accuracy. Here, we present vGait, a comprehensive 3D gait assessment method using a single RGB-D sensor and state-of-the-art pose-tracking algorithms. vGait was validated in healthy participants during frontal- and sagittal-perspective walking. Performance was comparable across perspectives, with vGait achieving high accuracy in detecting initial and final foot contacts (F1 scores > 95%) and reliably quantifying spatiotemporal gait parameters (e.g., stride time, stride length) and whole-body coordination metrics (e.g., arm swing and knee angle ROM) at different levels of granularity (mean, step-to-step variability, side asymmetry). The flexibility, accuracy, and minimal resource requirements of vGait make it a valuable tool for clinical and non-clinical applications, including outpatient clinics, medical practices, nursing homes, and community settings. By enabling efficient and scalable gait assessment, vGait has the potential to enhance diagnostic and therapeutic workflows and improve access to clinical mobility monitoring.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] Minimal clinically important differences of spatiotemporal gait variables in Parkinson disease
    Baudendistel, Sidney T.
    Haussler, Allison M.
    Rawson, Kerri S.
    Earhart, Gammon M.
    [J]. GAIT & POSTURE, 2024, 108 : 257 - 263
  • [2] Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function
    Bertram, Johannes
    Krueger, Theresa
    Roehling, Hanna Marie
    Jelusic, Ante
    Mansow-Model, Sebastian
    Schniepp, Roman M.
    Wuehr, Max M.
    Otte, Karen
    [J]. PLOS ONE, 2023, 18 (01):
  • [3] Minimal clinically important difference for change in comfortable gait speed of adults with pathology: a systematic review
    Bohannon, Richard W.
    Glenney, Susan S.
    [J]. JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2014, 20 (04) : 295 - 300
  • [4] An Algorithm for Accurate Marker-Based Gait Event Detection in Healthy and Pathological Populations During Complex Motor Tasks
    Bonci, Tecla
    Salis, Francesca
    Scott, Kirsty
    Alcock, Lisa
    Becker, Clemens
    Bertuletti, Stefano
    Buckley, Ellen
    Caruso, Marco
    Cereatti, Andrea
    Del Din, Silvia
    Gazit, Eran
    Hansen, Clint
    Hausdorff, Jeffrey M.
    Maetzler, Walter
    Palmerini, Luca
    Rochester, Lynn
    Schwickert, Lars
    Sharrack, Basil
    Vogiatzis, Ioannis
    Mazza, Claudia
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [5] Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables
    Clark, Ross A.
    Bower, Kelly J.
    Mentiplay, Benjamin F.
    Paterson, Kade
    Pua, Yong-Hao
    [J]. JOURNAL OF BIOMECHANICS, 2013, 46 (15) : 2722 - 2725
  • [6] Precision Balance Assessment in Parkinson's Disease: Utilizing Vision-Based 3D Pose Tracking for Pull Test Analysis
    Ellrich, Nina
    Niermeyer, Kasimir
    Peto, Daniela
    Decker, Julian
    Fietzek, Urban M.
    Katzdobler, Sabrina
    Hoeglinger, Guenter U.
    Jahn, Klaus
    Zwergal, Andreas
    Wuehr, Max
    [J]. SENSORS, 2024, 24 (11)
  • [7] Minimal clinically important differences in treadmill, 6-minute walk, and patient-based outcomes following supervised and home-based exercise in peripheral artery disease
    Gardner, Andrew W.
    Montgomery, Polly S.
    Wang, Ming
    [J]. VASCULAR MEDICINE, 2018, 23 (04) : 349 - 357
  • [8] Kinematic Validation of a Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments
    Geerse, Daphne J.
    Coolen, Bert H.
    Roerdink, Melvyn
    [J]. PLOS ONE, 2015, 10 (10):
  • [9] Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results
    Goetz, Christopher G.
    Tilley, Barbara C.
    Shaftman, Stephanie R.
    Stebbins, Glenn T.
    Fahn, Stanley
    Martinez-Martin, Pablo
    Poewe, Werner
    Sampaio, Cristina
    Stern, Matthew B.
    Dodel, Richard
    Dubois, Bruno
    Holloway, Robert
    Jankovic, Joseph
    Kulisevsky, Jaime
    Lang, Anthony E.
    Lees, Andrew
    Leurgans, Sue
    LeWitt, Peter A.
    Nyenhuis, David
    Olanow, C. Warren
    Rascol, Olivier
    Schrag, Anette
    Teresi, Jeanne A.
    van Hilten, Jacobus J.
    LaPelle, Nancy
    [J]. MOVEMENT DISORDERS, 2008, 23 (15) : 2129 - 2170
  • [10] Hausdorff Jeffrey M, 2005, J Neuroeng Rehabil, V2, P19