Counting homomorphisms from surface groups to finite groups

被引:0
|
作者
Klug, Michael R. [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2025年 / 68卷 / 01期
关键词
surface group; counting group homomorphisms; EQUATIONS; NUMBER;
D O I
10.4153/S0008439524000420
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a result that relates the number of homomorphisms from the fundamental group of a compact nonorientable surface to a finite group G , where conjugacy classes of the boundary components of the surface must map to prescribed conjugacy classes in G , to a sum over values of irreducible characters of G weighted by Frobenius-Schur multipliers. The proof is structured so that the corresponding results for closed and possibly orientable surfaces, as well as some generalizations, are derived using the same methods. We then apply these results to the specific case of the symmetric group.
引用
收藏
页码:141 / 153
页数:13
相关论文
共 50 条
  • [1] Counting compositions over finite abelian groups
    Gao, Zhicheng
    MacFie, Andrew
    Wang, Qiang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02)
  • [2] Counting subgroups of fixed order in finite abelian groups
    Admasu, Fikreab Solomon
    Sehgal, Amit
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (01) : 263 - 276
  • [3] Counting Fuzzy Normal Subgroups of Non-Abelian Finite Groups
    Davvaz, B.
    Ardekani, L. Kamali
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2017, 28 (06) : 571 - 590
  • [4] Counting Fuzzy Subgroups of Some Finite Groups by a New Equivalence Relation
    Ardekani, Leili Kamali
    FILOMAT, 2019, 33 (19) : 6151 - 6160
  • [5] Counting Distinct Fuzzy Subgroups of Finite Abelian Groups of Order pnqm
    Han, Lingling
    Guo, Xiuyun
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2020, 35 (3-4) : 263 - 280
  • [6] On the number of epi-, mono- and homomorphisms of groups
    Brusyanskaya, E. K.
    Klyachko, Ant. A.
    IZVESTIYA MATHEMATICS, 2022, 86 (02) : 243 - 251
  • [7] Word problems for finite nilpotent groups
    Camina, Rachel D.
    Iniguez, Ainhoa
    Thillaisundaram, Anitha
    ARCHIV DER MATHEMATIK, 2020, 115 (06) : 599 - 609
  • [8] Fuchsian groups, finite simple groups and representation varieties
    Martin W. Liebeck
    Aner Shalev
    Inventiones mathematicae, 2005, 159 : 317 - 367
  • [9] Representations of surface groups with finite mapping class group orbits
    Biswas, Indranil
    Koberda, Thomas
    Mj, Mahan
    Santharoubane, Ramanujan
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 241 - 250
  • [10] Quotients of surface groups and homology of finite covers via quantum representations
    Thomas Koberda
    Ramanujan Santharoubane
    Inventiones mathematicae, 2016, 206 : 269 - 292