Periodontitis diagnosis: A review of current and future trends in artificial intelligence

被引:3
作者
Jundaeng, Jarupat [1 ,2 ,3 ]
Chamchong, Rapeeporn [4 ]
Nithikathkul, Choosak [1 ,2 ]
机构
[1] Mahasarakham Univ, Fac Med, Hlth Sci Program, Maha Sarakham, Thailand
[2] Mahasarakham Univ, Fac Med, Trop Hlth Innovat Res Unit, Maha Sarakham, Thailand
[3] Fang Hosp, Dent Dept, Chiangmai, Thailand
[4] Mahasarakham Univ, Fac Informat, Dept Comp Sci, Maha Sarakham, Thailand
关键词
Artificial intelligence; panoramic radiograph; periodontitis; periodontal disease; diagnosis; PERI-IMPLANT DISEASES; CONSENSUS REPORT; CLINICAL-PARAMETERS; COMPROMISED TEETH; TOOTH LOSS; CLASSIFICATION; PATHOGENESIS; WORKSHOP; RADIOGRAPHS; MAINTENANCE;
D O I
10.3233/THC-241169
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BACKGROUND: Artificial intelligence (AI) acts as the state-of-the-art in periodontitis diagnosis in dentistry. Current diagnostic challenges include errors due to a lack of experienced dentists, limited time for radiograph analysis, and mandatory reporting, impacting care quality, cost, and efficiency. OBJECTIVE: This review aims to evaluate the current and future trends in AI for diagnosing periodontitis. METHODS: A thorough literature review was conducted following PRISMA guidelines. We searched databases including PubMed, Scopus, Wiley Online Library, and ScienceDirect for studies published between January 2018 and December 2023. Keywords used in the search included "artificial intelligence," "panoramic radiograph," "periodontitis," "periodontal disease," and "diagnosis." RESULTS: The review included 12 studies from an initial 211 records. These studies used advanced models, particularly convolutional neural networks (CNNs), demonstrating accuracy rates for periodontal bone loss detection ranging from 0.76 to 0.98. Methodologies included deep learning hybrid methods, automated identification systems, and machine learning classifiers, enhancing diagnostic precision and efficiency. CONCLUSIONS: Integrating AI innovations in periodontitis diagnosis enhances diagnostic accuracy and efficiency, providing a robust alternative to conventional methods. These technologies offer quicker, less labor-intensive, and more precise alternatives to classical approaches. Future research should focus on improving AI model reliability and generalizability to ensure widespread clinical adoption.
引用
收藏
页码:473 / 484
页数:12
相关论文
共 64 条
[1]   An evaluation of the periapical status of teeth with necrotic pulps using periapical radiography and cone- beam computed tomography [J].
Abella, F. ;
Patel, S. ;
Duran-Sindreu, F. ;
Mercade, M. ;
Bueno, R. ;
Roig, M. .
INTERNATIONAL ENDODONTIC JOURNAL, 2014, 47 (04) :387-396
[2]   Development and validation of an artificial intelligence software for periodontal bone loss in panoramic imaging [J].
Amasya, Hakan ;
Jaju, Prashant Prakash ;
Ezhov, Matvey ;
Gusarev, Maxim ;
Atakan, Cemal ;
Sanders, Alex ;
Manulius, David ;
Golitskya, Maria ;
Shrivastava, Kriti ;
Singh, Ajita ;
Gupta, Anuja ;
Onder, Merve ;
Orhan, Kaan .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
[3]  
Armitage G C, 1999, Ann Periodontol, V4, P1, DOI 10.1902/annals.1999.4.1.1
[4]   CLINICAL-EVALUATION OF PERIODONTAL-DISEASES [J].
ARMITAGE, GC .
PERIODONTOLOGY 2000, 1995, 7 :39-53
[5]   Applications of artificial intelligence and machine learning in orthodontics: a scoping review [J].
Bichu, Yashodhan M. ;
Hansa, Ismaeel ;
Bichu, Aditi Y. ;
Premjani, Pratik ;
Flores-Mir, Carlos ;
Vaid, Nikhilesh R. .
PROGRESS IN ORTHODONTICS, 2021, 22 (01)
[6]  
Casalegno F, 2019, J Clin Med., V8, P1540
[7]   Predictors of tooth loss during long-term periodontal maintenance: a systematic review of observational studies [J].
Chambrone, Leandro ;
Chambrone, Daniela ;
Lima, Luiz A. ;
Chambrone, Luiz A. .
JOURNAL OF CLINICAL PERIODONTOLOGY, 2010, 37 (07) :675-684
[8]   Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis [J].
Chang, Hyuk-Joon ;
Lee, Sang-Jeong ;
Yong, Tae-Hoon ;
Shin, Nan-Young ;
Jang, Bong-Geun ;
Kim, Jo-Eun ;
Huh, Kyung-Hoe ;
Lee, Sam-Sun ;
Heo, Min-Suk ;
Choi, Soon-Chul ;
Kim, Tae-Il ;
Yi, Won-Jin .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases [J].
Chapple, Iain L. C. ;
Bouchard, Philippe ;
Cagetti, Maria Grazia ;
Campus, Guglielmo ;
Carra, Maria-Clotilde ;
Cocco, Fabio ;
Nibali, Luigi ;
Hujoel, Philippe ;
Laine, Marja L. ;
Lingstrom, Peter ;
Manton, David J. ;
Montero, Eduardo ;
Pitts, Nigel ;
Range, Helene ;
Schlueter, Nadine ;
Teughels, Wim ;
Twetman, Svante ;
Van Loveren, Cor ;
Van der Weijden, Fridus ;
Vieira, Alexandre R. ;
Schulte, Andreas G. .
JOURNAL OF CLINICAL PERIODONTOLOGY, 2017, 44 :S39-S51
[10]  
Charisis AS, 2019, IEEE Trans Neural Syst Rehabil Eng., V27, P223