Quantitative Insights into Pressure-Responsive Phase Behavior in Diblock Copolymers

被引:1
|
作者
Degaki, Hiroki [1 ,2 ]
Taniguchi, Ikuo [2 ,3 ]
Deguchi, Shigeru [2 ]
Koga, Tsuyoshi [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Kyoto 6158510, Japan
[2] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res Ctr Biosci & Nanosci, Yokosuka 2370061, Japan
[3] Kyoto Inst Technol Matsugasaki, Grad Sch Sci & Technol, Kyoto 6068585, Japan
基金
日本学术振兴会;
关键词
CRITICAL ORDERING TRANSITION; DISORDER TRANSITION; BLOCK-COPOLYMERS; STATISTICAL THERMODYNAMICS; MICROPHASE SEPARATION; INTERACTION PARAMETER; UNSTABLE PHASES; FREE-ENERGY; TEMPERATURE; COMPRESSIBILITY;
D O I
10.1021/acs.macromol.4c02253
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The pressure-responsive phase behavior of block copolymers, which is crucial for energy-efficient processing of certain polymeric materials, is systematically studied using a compressible self-consistent field theory based on a simple lattice vacancy model. To date, predictions of the phase behavior have been based mainly on qualitative assessments. In this study, we quantitatively show that large differences in the self-interaction energy between blocks lead to disordering with increasing pressure, while small differences lead to ordering. We discuss the molecular mechanisms underlying the phase behavior with a focus on voids, which account for the compressibility. The results from our theory agrees with the effective Flory-Huggins interaction parameter calculated by the compressible random phase approximation theory. Additionally, extending the theory to multicomponent systems, we investigate the effect of gas absorption on phase behavior, focusing on the balance of interaction parameters. Our results predict that gas absorption enhances pressure-induced ordering.
引用
收藏
页码:2401 / 2411
页数:11
相关论文
共 50 条
  • [21] Recent advances in organic pressure-responsive luminescent materials
    Fu, Zhiyuan
    Wang, Kai
    Zou, Bo
    CHINESE CHEMICAL LETTERS, 2019, 30 (11) : 1883 - 1894
  • [22] The retention behavior of diblock copolymers in gradient chromatography; Similarities of diblock copolymers and homopolymers
    Radke, Wolfgang
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1593 : 17 - 23
  • [23] PRESSURE DEPENDENCE OF THE PHASE BEHAVIOUR OF POLYMER BLENDS AND DIBLOCK COPOLYMERS.
    Mortensen, Kell
    Frielinghaus, Henrich
    Schwahn, Dietmar
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 137 - 137
  • [24] Phase behavior of binary blends of chemically different, symmetric diblock copolymers
    Papadakis, CM
    Busch, P
    Weidisch, R
    Eckerlebe, H
    Posselt, D
    MACROMOLECULES, 2002, 35 (24) : 9236 - 9238
  • [25] Phase Behavior of Melts of Diblock-Copolymers with One Charged Block
    Gavrilov, Alexey A.
    Chertovich, Alexander V.
    Potemkin, Igor I.
    POLYMERS, 2019, 11 (06)
  • [26] Phase behavior of a blend of polymer-tethered nanoparticles with diblock copolymers
    Reister, E
    Fredrickson, GH
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (21):
  • [27] Melt phase behavior of poly(oxyethylene)-poly(oxypropylene) diblock copolymers
    Hamley, IW
    Castelletto, V
    Yang, Z
    Price, C
    Booth, C
    MACROMOLECULES, 2001, 34 (12) : 4079 - 4081
  • [28] Multi-stimuli responsive supramolecular diblock copolymers
    Sambe, L.
    Belal, K.
    Stoffelbach, F.
    Lyskawa, J.
    Delattre, F.
    Bria, M.
    Sauvage, F. X.
    Sliwa, M.
    Humblot, V.
    Charleux, B.
    Cooke, G.
    Woisel, P.
    POLYMER CHEMISTRY, 2014, 5 (03) : 1031 - 1036
  • [29] Responsive micelles and vesicles based on polypeptide diblock copolymers
    Checot, F.
    Rodriguez-Hernandez, J.
    Gnanou, Y.
    Lecommandoux, S.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (9-10) : 782 - 785
  • [30] pH-responsive nanoaggregation of diblock phosphorylcholine copolymers
    Mu, Q. S.
    Zhao, X. B.
    Lu, J. R.
    Armes, S. P.
    Lewis, A. L.
    Thomas, R. K.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (32): : 9652 - 9659